
curl_easy_setopt(3) libcurl Manual curl_easy_setopt(3)

NAME
curl_easy_setopt − set options for a curl easy handle

SYNOPSIS
#include <curl/curl.h>

CURLcode curl_easy_setopt(CURL *handle, CURLoption option, parameter);

DESCRIPTION
curl_easy_setopt() is used to tell libcurl how to behave. By using the appropriate options to
curl_easy_setopt, you can change libcurl’s behavior. All options are set with theoption followed by a
parameter. That parameter can be along, a function pointer, an object pointer or acurl_off_t , depending
on what the specific option expects. Read this manual carefully as bad input values may cause libcurl to
behave badly! You can only set one option in each function call. A typical application uses many
curl_easy_setopt() calls in the setup phase.

Options set with this function call are valid for all forthcoming transfers performed using thishandle. The
options are not in any way reset between transfers, so if you want subsequent transfers with different
options, you must change them between the transfers. You can optionally reset all options back to internal
default withcurl_easy_reset(3).

Strings passed to libcurl as ’char *’ arguments, are copied by the library; thus the string storage associated
to the pointer argument may be overwritten after curl_easy_setopt() returns. Exceptions to this rule are
described in the option details below.

NOTE: before 7.17.0 strings were not copied. Instead the user was forced keep them available until libcurl
no longer needed them.

Thehandleis the return code from acurl_easy_init(3)or curl_easy_duphandle(3)call.

BEHAVIOR OPTIONS
CURLOPT_VERBOSE

Set the parameter to non-zero to get the library to display a lot of verbose information about its
operations. Very useful for libcurl and/or protocol debugging and understanding. The verbose
information will be sent to stderr, or the stream set withCURLOPT_STDERR.

You hardly ever want this set in production use, you will almost always want this when you
debug/report problems. Another neat option for debugging is theCURLOPT_DEBUGFUNCTION.

CURLOPT_HEADER
A non-zero parameter tells the library to include the header in the body output. This is only rele-
vant for protocols that actually have headers preceding the data (like HTTP).

CURLOPT_NOPROGRESS
A non-zero parameter tells the library to shut off the built-in progress meter completely.

Future versions of libcurl is likely to not have any built-in progress meter at all.

CURLOPT_NOSIGNAL
Pass a long. If it is non-zero, libcurl will not use any functions that install signal handlers or any
functions that cause signals to be sent to the process. This option is mainly here to allow multi-
threaded unix applications to still set/use all timeout options etc, without risking getting signals.
(Added in 7.10)

Consider building libcurl with ares support to enable asynchronous DNS lookups. It enables nice
timeouts for name resolves without signals.

libcurl 7.18.0 5 Jan 2008 1

curl_easy_setopt(3) libcurl Manual curl_easy_setopt(3)

CALLB ACK OPTIONS
CURLOPT_WRITEFUNCTION

Function pointer that should match the following prototype:size_t function(void *ptr, size_t
size, size_t nmemb, void *stream); This function gets called by libcurl as soon as there is data
received that needs to be saved. The size of the data pointed to byptr is sizemultiplied with
nmemb, it will not be zero terminated. Return the number of bytes actually taken care of. If that
amount differs from the amount passed to your function, it’ll signal an error to the library and it
will abort the transfer and returnCURLE_WRITE_ERROR.

From 7.18.0, the function can return CURL_WRITEFUNC_PAUSE which then will cause writing
to this connection to become paused. Seecurl_easy_pause(3)for further details.

This function may be called with zero bytes data if the transfered file is empty.

Set this option to NULL to get the internal default function. The internal default function will
write the data to the FILE * given with CURLOPT_WRITEDATA.

Set thestreamargument with theCURLOPT_WRITEDATA option.

The callback function will be passed as much data as possible in all invokes, but you cannot possi-
bly make any assumptions. It may be one byte, it may be thousands. The maximum amount of data
that can be passed to the write callback is defined in the curl.h header file:
CURL_MAX_WRITE_SIZE.

CURLOPT_WRITEDAT A
Data pointer to pass to the file write function. If you use theCURLOPT_WRITEFUNCTION
option, this is the pointer you’ll get as input. If you don’t use a callback, you must pass a ’FILE *’
as libcurl will pass this to fwrite() when writing data.

The internalCURLOPT_WRITEFUNCTIONwill write the data to the FILE * given with this
option, or to stdout if this option hasn’t been set.

If you’re using libcurl as a win32 DLL, youMUST use theCURLOPT_WRITEFUNCTIONif you
set this option or you will experience crashes.

This option is also known with the older nameCURLOPT_FILE, the nameCURLOPT_WRITE-
DATA was introduced in 7.9.7.

CURLOPT_READFUNCTION
Function pointer that should match the following prototype:size_t function(void *ptr, size_t
size, size_t nmemb, void *stream); This function gets called by libcurl as soon as it needs to read
data in order to send it to the peer. The data area pointed at by the pointerptr may be filled with at
mostsizemultiplied withnmembnumber of bytes. Your function must return the actual number of
bytes that you stored in that memory area. Returning 0 will signal end-of-file to the library and
cause it to stop the current transfer.

If you stop the current transfer by returning 0 "pre-maturely" (i.e before the server expected it, like
when you’ve told you will upload N bytes and you upload less than N bytes), you may experience
that the server "hangs" waiting for the rest of the data that won’t come.

The read callback may returnCURL_READFUNC_ABORTto stop the current operation immedi-
ately, resulting in aCURLE_ABORTED_BY_CALLBACK error code from the transfer (Added in
7.12.1)

From 7.18.0, the function can return CURL_READFUNC_PAUSE which then will cause reading
from this connection to become paused. Seecurl_easy_pause(3)for further details.

libcurl 7.18.0 5 Jan 2008 2

curl_easy_setopt(3) libcurl Manual curl_easy_setopt(3)

If you set the callback pointer to NULL, or doesn’t set it at all, the default internal read function
will be used. It is simply doing an fread() on the FILE * stream set withCURLOPT_READDATA.

CURLOPT_READDAT A
Data pointer to pass to the file read function. If you use theCURLOPT_READFUNCTIONoption,
this is the pointer you’ll get as input. If you don’t specify a read callback but instead rely on the
default internal read function, this data must be a valid readable FILE *.

If you’re using libcurl as a win32 DLL, you MUST use aCURLOPT_READFUNCTIONif you set
this option.

This option is also known with the older nameCURLOPT_INFILE, the nameCURLOPT_READ-
DATA was introduced in 7.9.7.

CURLOPT_IOCTLFUNCTION
Function pointer that should match thecurl_ioctl_callbackprototype found in<curl/curl.h> . This
function gets called by libcurl when something special I/O-related needs to be done that the library
can’t do by itself. For now, rewinding the read data stream is the only action it can request. The
rewinding of the read data stream may be necessary when doing a HTTP PUT or POST with a
multi-pass authentication method. (Option added in 7.12.3).

UseCURLOPT_SEEKFUNCTIONinstead to provide seeking!

CURLOPT_IOCTLDAT A
Pass a pointer that will be untouched by libcurl and passed as the 3rd argument in the ioctl call-
back set withCURLOPT_IOCTLFUNCTION. (Option added in 7.12.3)

CURLOPT_SEEKFUNCTION
Function pointer that should match the following prototype:int function(void *instream, curl_off_t
offset, int origin);This function gets called by libcurl to seek to a certain position in the input
stream and can be used to fast forward a file in a resumed upload (instead of reading all uploaded
bytes with the normal read function/callback). It is also called to rewind a stream when doing a
HTTP PUT or POST with a multi-pass authentication method. The function shall work like
"fseek" or "lseek" and accepted SEEK_SET, SEEK_CUR and SEEK_END as argument for origin,
although (in 7.18.0) libcurl only passes SEEK_SET. The callback must return 0 on success as
returning non-zero will cause the upload operation to fail.

If you forward the input arguments directly to "fseek" or "lseek", note that the data type foroffset
is not the same as defined for curl_off_t on many systems! (Option added in 7.18.0)

CURLOPT_SEEKDAT A
Data pointer to pass to the file read function. If you use theCURLOPT_SEEKFUNCTIONoption,
this is the pointer you’ll get as input. If you don’t specify a seek callback, NULL is passed.
(Option added in 7.18.0)

CURLOPT_SOCKOPTFUNCTION
Function pointer that should match thecurl_sockopt_callbackprototype found in<curl/curl.h> .
This function gets called by libcurl after the socket() call but before the connect() call. The call-
back’spurposeargument identifies the exact purpose for this particular socket, and currently only
one value is supported:CURLSOCKTYPE_IPCXNfor the primary connection (meaning the con-
trol connection in the FTP case). Future versions of libcurl may support more purposes. It passes
the newly created socket descriptor so additional setsockopt() calls can be done at the user’s dis-
cretion. Anon-zero return code from the callback function will signal an unrecoverable error to
the library and it will close the socket and returnCURLE_COULDNT_CONNECT. (Option added
in 7.15.6.)

CURLOPT_SOCKOPTDAT A
Pass a pointer that will be untouched by libcurl and passed as the first argument in the sockopt
callback set withCURLOPT_SOCKOPTFUNCTION. (Option added in 7.15.6.)

libcurl 7.18.0 5 Jan 2008 3

curl_easy_setopt(3) libcurl Manual curl_easy_setopt(3)

CURLOPT_OPENSOCKETFUNCTION
Function pointer that should match thecurl_opensocket_callback prototype found in
<curl/curl.h> . This function gets called by libcurl instead of thesocket(2) call. The callback’s pur-
poseargument identifies the exact purpose for this particular socket, and currently only one value
is supported:CURLSOCKTYPE_IPCXNfor the primary connection (meaning the control connec-
tion in the FTP case). Future versions of libcurl may support more purposes. It passes the resolved
peer address as aaddressargument so the callback can modify the address or refuse to connect at
all. The callback function should return the socket orCURL_SOCKET_BADin case no connection
should be established or any error detected. Any additionalsetsockopt(2) calls can be done on the
socket at the user’s discretion. CURL_SOCKET_BADreturn value from the callback function will
signal an unrecoverable error to the library and it will returnCURLE_COULDNT_CONNECT.
This return code can be used for IP address blacklisting. The default behavior is:

return socket(addr->family, addr->socktype, addr->protocol); (Option added in 7.17.1.)

CURLOPT_OPENSOCKETDAT A
Pass a pointer that will be untouched by libcurl and passed as the first argument in the opensocket
callback set withCURLOPT_OPENSOCKETFUNCTION. (Option added in 7.17.1.)

CURLOPT_PROGRESSFUNCTION
Function pointer that should match thecurl_progress_callbackprototype found in<curl/curl.h> .
This function gets called by libcurl instead of its internal equivalent with a frequent interval during
operation (roughly once per second) no matter if data is being transfered or not.Unknown/unused
argument values passed to the callback will be set to zero (like if you only download data, the
upload size will remain 0). Returning a non-zero value from this callback will cause libcurl to
abort the transfer and returnCURLE_ABORTED_BY_CALLBACK.

If you transfer data with the multi interface, this function will not be called during periods of idle-
ness unless you call the appropriate libcurl function that performs transfers.

CURLOPT_NOPROGRESSmust be set to FALSE to make this function actually get called.

CURLOPT_PROGRESSDAT A
Pass a pointer that will be untouched by libcurl and passed as the first argument in the progress
callback set withCURLOPT_PROGRESSFUNCTION.

CURLOPT_HEADERFUNCTION
Function pointer that should match the following prototype:size_t function(void *ptr, size_t size,
size_t nmemb, void *stream);. This function gets called by libcurl as soon as it has received header
data. The header callback will be called once for each header and only complete header lines are
passed on to the callback. Parsing headers should be easy enough using this. The size of the data
pointed to byptr is sizemultiplied with nmemb. Do not assume that the header line is zero termi-
nated! The pointer namedstreamis the one you set with theCURLOPT_WRITEHEADERoption.
The callback function must return the number of bytes actually taken care of, or return -1 to signal
error to the library (it will cause it to abort the transfer with aCURLE_WRITE_ERRORreturn
code).

Since 7.14.1: When a server sends a chunked encoded transfer, it may contain a trailer. That trailer
is identical to a HTTP header and if such a trailer is received it is passed to the application using
this callback as well. There are several ways to detect it being a trailer and not an ordinary header:
1) it comes after the response-body. 2) it comes after the final header line (CR LF) 3) a Trailer:
header among the response-headers mention what header to expect in the trailer.

CURLOPT_WRITEHEADER
(This option is also known asCURLOPT_HEADERDAT A) Pass a pointer to be used to write the
header part of the received data to. If you don’t use your own callback to take care of the writing,
this must be a valid FILE *. See also theCURLOPT_HEADERFUNCTIONoption above on how
to set a custom get-all-headers callback.

libcurl 7.18.0 5 Jan 2008 4

curl_easy_setopt(3) libcurl Manual curl_easy_setopt(3)

CURLOPT_DEBUGFUNCTION
Function pointer that should match the following prototype:int curl_debug_callback (CURL *,
curl_infotype, char *, size_t, void *); CURLOPT_DEBUGFUNCTION replaces the standard
debug function used whenCURLOPT_VERBOSEis in effect. This callback receives debug infor-
mation, as specified with thecurl_infotype argument. This function must return 0. The data
pointed to by the char * passed to this function WILL NOT be zero terminated, but will be exactly
of the size as told by the size_t argument.

Av ailable curl_infotype values:

CURLINFO_TEXT
The data is informational text.

CURLINFO_HEADER_IN
The data is header (or header-like) data received from the peer.

CURLINFO_HEADER_OUT
The data is header (or header-like) data sent to the peer.

CURLINFO_DAT A_IN
The data is protocol data received from the peer.

CURLINFO_DAT A_OUT
The data is protocol data sent to the peer.

CURLOPT_DEBUGDAT A
Pass a pointer to whatever you want passed in to yourCURLOPT_DEBUGFUNCTIONin the last
void * argument. This pointer is not used by libcurl, it is only passed to the callback.

CURLOPT_SSL_CTX_FUNCTION
Function pointer that should match the following prototype:CURLcode sslctxfun(CURL *curl,
void *sslctx, void *parm); This function gets called by libcurl just before the initialization of an
SSL connection after having processed all other SSL related options to give a last chance to an
application to modify the behaviour of openssl’s ssl initialization. Thesslctxparameter is actually
a pointer to an opensslSSL_CTX. If an error is returned no attempt to establish a connection is
made and the perform operation will return the error code from this callback function.Set the
parm argument with theCURLOPT_SSL_CTX_DATA option. This option was introduced in
7.11.0.

This function will get called on all new connections made to a server, during the SSL negotiation.
The SSL_CTX pointer will be a new one every time.

To use this properly, a non-trivial amount of knowledge of the openssl libraries is necessary. Using
this function allows for example to use openssl callbacks to add additional validation code for cer-
tificates, and even to change the actual URI of an HTTPS request (example used in the lib509 test
case). Seealso the example section for a replacement of the key, certificate and trust file settings.

CURLOPT_SSL_CTX_DAT A
Data pointer to pass to the ssl context callback set by the optionCURLOPT_SSL_CTX_FUNC-
TION, this is the pointer you’ll get as third parameter, otherwiseNULL . (Added in 7.11.0)

CURLOPT_CONV_TO_NETWORK_FUNCTION

CURLOPT_CONV_FROM_NETWORK_FUNCTION

CURLOPT_CONV_FROM_UTF8_FUNCTION
Function pointers that should match the following prototype: CURLcode function(char *ptr, size_t
length);

These three options apply to non-ASCII platforms only. They are available only if
CURL_DOES_CONVERSIONS was defined when libcurl was built. When this is the case,

libcurl 7.18.0 5 Jan 2008 5

curl_easy_setopt(3) libcurl Manual curl_easy_setopt(3)

curl_version_info(3)will return the CURL_VERSION_CONV feature bit set.

The data to be converted is in a buffer pointed to by the ptr parameter. The amount of data to con-
vert is indicated by the length parameter. The converted data overlays the input data in the buffer
pointed to by the ptr parameter. CURLE_OK should be returned upon successful conversion. A
CURLcode return value defined by curl.h, such as CURLE_CONV_FAILED, should be returned
if an error was encountered.

CURLOPT_CONV_TO_NETWORK_FUNCTION and CURLOPT_CONV_FROM_NET-
WORK_FUNCTION convert between the host encoding and the network encoding.They are
used when commands or ASCII data are sent/received over the network.

CURLOPT_CONV_FROM_UTF8_FUNCTION is called to convert from UTF8 into the host
encoding. Itis required only for SSL processing.

If you set a callback pointer to NULL, or don’t set it at all, the built-in libcurl iconv functions will
be used. If HAVE_ICONV was not defined when libcurl was built, and no callback has been
established, conversion will return the CURLE_CONV_REQD error code.

If HAVE_ICONV is defined, CURL_ICONV_CODESET_OF_HOST must also be defined.For
example:

#define CURL_ICONV_CODESET_OF_HOST "IBM-1047"

The iconv code in libcurl will default the network and UTF8 codeset names as follows:

#define CURL_ICONV_CODESET_OF_NETWORK "ISO8859-1"

#define CURL_ICONV_CODESET_FOR_UTF8 "UTF-8"

You will need to override these definitions if they are different on your system.

ERROR OPTIONS
CURLOPT_ERRORBUFFER

Pass a char * to a buffer that the libcurl may store human readable error messages in. This may be
more helpful than just the return code fromcurl_easy_perform. The buffer must be at least
CURL_ERROR_SIZE big. Although this argument is a ’char *’, it does not describe an input
string. Thereforethe (probably undefined) contents of the buffer is NOT copied by the library.
You should keep the associated storage available until libcurl no longer needs it. Failing to do so
will cause very odd behavior or even crashes. libcurl will need it until you call
curl_easy_cleanup(3)or you set the same option again to use a different pointer.

UseCURLOPT_VERBOSEandCURLOPT_DEBUGFUNCTIONto better debug/trace why errors
happen.

If the library does not return an error, the buffer may not have been touched. Do not rely on the
contents in those cases.

CURLOPT_STDERR
Pass a FILE * as parameter. Tell libcurl to use this stream instead of stderr when showing the
progress meter and displayingCURLOPT_VERBOSEdata.

CURLOPT_FAILONERROR
A non-zero parameter tells the library to fail silently if the HTTP code returned is equal to or
larger than 400. The default action would be to return the page normally, ignoring that code.

libcurl 7.18.0 5 Jan 2008 6

curl_easy_setopt(3) libcurl Manual curl_easy_setopt(3)

This method is not fail-safe and there are occasions where non-successful response codes will slip
through, especially when authentication is involved (response codes 401 and 407).

You might get some amounts of headers transferred before this situation is detected, like for when
a "100-continue" is received as a response to a POST/PUT and a 401 or 407 is received immedi-
ately afterwards.

NETWORK OPTIONS
CURLOPT_URL

The actual URL to deal with. The parameter should be a char * to a zero terminated string.

If the given URL lacks the protocol part ("http://" or "ftp://" etc), it will attempt to guess which
protocol to use based on the given host name. If the given protocol of the set URL is not sup-
ported, libcurl will return on error (CURLE_UNSUPPORTED_PROT OCOL) when you call
curl_easy_perform(3)or curl_multi_perform(3). Use curl_version_info(3)for detailed info on
which protocols that are supported.

The string given to CURLOPT_URL must be url-encoded and following the RFC 2396
(http://curl.haxx.se/rfc/rfc2396.txt).

CURLOPT_URLis the only option thatmust be set beforecurl_easy_perform(3)is called.

CURLOPT_PROXY
Set HTTP proxy to use. The parameter should be a char * to a zero terminated string holding the
host name or dotted IP address. To specify port number in this string, append :[port] to the end of
the host name. The proxy string may be prefixed with [protocol]:// since any such prefix will be
ignored. The proxy’s port number may optionally be specified with the separate optionCUR-
LOPT_PROXYPORT.

When you tell the library to use an HTTP proxy, libcurl will transparently convert operations to
HTTP even if you specify an FTP URL etc. This may have an impact on what other features of the
library you can use, such asCURLOPT_QUOTEand similar FTP specifics that don’t work unless
you tunnel through the HTTP proxy. Such tunneling is activated with CURLOPT_HTTPPROXY-
TUNNEL.

libcurl respects the environment variableshttp_proxy , ftp_proxy , all_proxy etc, if any of those is
set. TheCURLOPT_PROXY option does however override any possibly set environment variables.

Setting the proxy string to "" (an empty string) will explicitly disable the use of a proxy, even if
there is an environment variable set for it.

Since 7.14.1, the proxy host string given in environment variables can be specified the exact same
way as the proxy can be set withCURLOPT_PROXY, include protocol prefix (http://) and embed-
ded user + password.

CURLOPT_PROXYPORT
Pass a long with this option to set the proxy port to connect to unless it is specified in the proxy
stringCURLOPT_PROXY.

CURLOPT_PROXYTYPE
Pass a long with this option to set type of the proxy. Available options for this areCURL-
PROXY_HTTP, CURLPROXY_SOCKS4(added in 7.15.2),CURLPROXY_SOCKS5, CURL-
PROXY_SOCKS4A(added in 7.18.0) andCURLPROXY_SOCKS5_HOSTNAME(added in 7.18.0).
The HTTP type is default. (Added in 7.10)

libcurl 7.18.0 5 Jan 2008 7

curl_easy_setopt(3) libcurl Manual curl_easy_setopt(3)

CURLOPT_HTTPPROXYTUNNEL
Set the parameter to non-zero to get the library to tunnel all operations through a given HTTP
proxy. There is a big difference between using a proxy and to tunnel through it. If you don’t know
what this means, you probably don’t want this tunneling option.

CURLOPT_SOCKS5_RESOLVE_LOCAL
Set the parameter to 1 to get the library to resolve the host name locally instead of passing it to the
proxy to resolve, when using a SOCKS5 proxy.

Note that libcurl before 7.18.0 always resolved the host name locally even when SOCKS5 was
used. (Added in 7.18.0)

CURLOPT_INTERFACE
Pass a char * as parameter. This set the interface name to use as outgoing network interface. The
name can be an interface name, an IP address or a host name.

CURLOPT_LOCALPORT
Pass a long. This sets the local port number of the socket used for connection. This can be used in
combination withCURLOPT_INTERFACE and you are recommended to useCURLOPT_LOCAL-
PORTRANGEas well when this is set. Note that port numbers are only valid 1 - 65535. (Added in
7.15.2)

CURLOPT_LOCALPORTRANGE
Pass a long. This is the number of attempts libcurl should do to find a working local port number.
It starts with the given CURLOPT_LOCALPORTand adds one to the number for each retry. Set-
ting this value to 1 or below will make libcurl do only one try for exact port number. Note that port
numbers by nature is a scarce resource that will be busy at times so setting this value to something
too low might cause unnecessary connection setup failures. (Added in 7.15.2)

CURLOPT_DNS_CACHE_TIMEOUT
Pass a long, this sets the timeout in seconds. Name resolves will be kept in memory for this num-
ber of seconds. Set to zero (0) to completely disable caching, or set to -1 to make the cached
entries remain forever. By default, libcurl caches this info for 60 seconds.

CURLOPT_DNS_USE_GLOBAL_CACHE
Pass a long. If the value is non-zero, it tells curl to use a global DNS cache that will survive
between easy handle creations and deletions. This is not thread-safe and this will use a global vari-
able.

WARNING: this option is considered obsolete. Stop using it. Switch over to using the share inter-
face instead! SeeCURLOPT_SHAREandcurl_share_init(3).

CURLOPT_BUFFERSIZE
Pass a long specifying your preferred size (in bytes) for the receive buffer in libcurl. The main
point of this would be that the write callback gets called more often and with smaller chunks. This
is just treated as a request, not an order. You cannot be guaranteed to actually get the given size.
(Added in 7.10)

This size is by default set as big as possible (CURL_MAX_WRITE_SIZE), so it only makes sense
to use this option if you want it smaller.

CURLOPT_PORT
Pass a long specifying what remote port number to connect to, instead of the one specified in the
URL or the default port for the used protocol.

CURLOPT_TCP_NODELAY
Pass a long specifying whether the TCP_NODELAY option should be set or cleared (1 = set, 0 =
clear). The option is cleared by default. This will have no effect after the connection has been
established.

libcurl 7.18.0 5 Jan 2008 8

curl_easy_setopt(3) libcurl Manual curl_easy_setopt(3)

Setting this option will disable TCP’s Nagle algorithm. The purpose of this algorithm is to try to
minimize the number of small packets on the network (where "small packets" means TCP seg-
ments less than the Maximum Segment Size (MSS) for the network).

Maximizing the amount of data sent per TCP segment is good because it amortizes the overhead
of the send. However, in some cases (most notably telnet or rlogin) small segments may need to be
sent without delay. This is less efficient than sending larger amounts of data at a time, and can con-
tribute to congestion on the network if overdone.

NAMES and PASSWORDS OPTIONS (Authentication)
CURLOPT_NETRC

This parameter controls the preference of libcurl between using user names and passwords from
your ˜/.netrcfile, relative to user names and passwords in the URL supplied withCURLOPT_URL.

libcurl uses a user name (and supplied or prompted password) supplied withCURLOPT_USER-
PWD in preference to any of the options controlled by this parameter.

Pass a long, set to one of the values described below.

CURL_NETRC_OPTIONAL
The use of your̃/.netrc file is optional, and information in the URL is to be preferred.
The file will be scanned with the host and user name (to find the password only) or with
the host only, to find the first user name and password after thatmachine, which ever
information is not specified in the URL.

Undefined values of the option will have this effect.

CURL_NETRC_IGNORED
The library will ignore the file and use only the information in the URL.

This is the default.

CURL_NETRC_REQUIRED
This value tells the library that use of the file is required, to ignore the information in the
URL, and to search the file with the host only.

Only machine name, user name and password are taken into account (init macros and similar things aren’t
supported).

libcurl does not verify that the file has the correct properties set (as the standard Unix ftp client does). It
should only be readable by user.

CURLOPT_NETRC_FILE
Pass a char * as parameter, pointing to a zero terminated string containing the full path name to the
file you want libcurl to use as .netrc file. If this option is omitted, andCURLOPT_NETRCis set,
libcurl will attempt to find the a .netrc file in the current user’s home directory. (Added in 7.10.9)

CURLOPT_USERPWD
Pass a char * as parameter, which should be [user name]:[password] to use for the connection. Use
CURLOPT_HTTPAUTH to decide authentication method.

When using NTLM, you can set domain by prepending it to the user name and separating the
domain and name with a forward (/) or backward slash (\). Like this: "domain/user:password" or
"domain\user:password". Some HTTP servers (on Windows) support this style even for Basic
authentication.

When using HTTP andCURLOPT_FOLLOWLOCATION, libcurl might perform several requests
to possibly different hosts. libcurl will only send this user and password information to hosts using
the initial host name (unlessCURLOPT_UNRESTRICTED_AUTHis set), so if libcurl follows

libcurl 7.18.0 5 Jan 2008 9

curl_easy_setopt(3) libcurl Manual curl_easy_setopt(3)

locations to other hosts it will not send the user and password to those. This is enforced to prevent
accidental information leakage.

CURLOPT_PROXYUSERPWD
Pass a char * as parameter, which should be [user name]:[password] to use for the connection to
the HTTP proxy. UseCURLOPT_PROXYAUTH to decide authentication method.

CURLOPT_HTTPAUTH
Pass a long as parameter, which is set to a bitmask, to tell libcurl what authentication method(s)
you want it to use. The available bits are listed below. If more than one bit is set, libcurl will first
query the site to see what authentication methods it supports and then pick the best one you allow
it to use. For some methods, this will induce an extra network round-trip. Set the actual name and
password with theCURLOPT_USERPWDoption. (Added in 7.10.6)

CURLAUTH_BASIC
HTTP Basic authentication. This is the default choice, and the only method that is in
wide-spread use and supported virtually everywhere. This is sending the user name and
password over the network in plain text, easily captured by others.

CURLAUTH_DIGEST
HTTP Digest authentication.Digest authentication is defined in RFC2617 and is a more
secure way to do authentication over public networks than the regular old-fashioned
Basic method.

CURLAUTH_GSSNEGOTIATE
HTTP GSS-Negotiate authentication. The GSS-Negotiate (also known as plain "Negoti-
ate") method was designed by Microsoft and is used in their web applications. It is pri-
marily meant as a support for Kerberos5 authentication but may be also used along with
another authentication methods. For more information see IETF draft draft-brezak-
spnego-http-04.txt.

You need to build libcurl with a suitable GSS-API library for this to work.

CURLAUTH_NTLM
HTTP NTLM authentication. A proprietary protocol invented and used by Microsoft. It
uses a challenge-response and hash concept similar to Digest, to prevent the password
from being eavesdropped.

You need to build libcurl with OpenSSL support for this option to work, or build libcurl
on Windows.

CURLAUTH_ANY
This is a convenience macro that sets all bits and thus makes libcurl pick any it finds suit-
able. libcurl will automatically select the one it finds most secure.

CURLAUTH_ANYSAFE
This is a convenience macro that sets all bits except Basic and thus makes libcurl pick
any it finds suitable. libcurl will automatically select the one it finds most secure.

CURLOPT_PROXYA UTH
Pass a long as parameter, which is set to a bitmask, to tell libcurl what authentication method(s)
you want it to use for your proxy authentication.If more than one bit is set, libcurl will first query
the site to see what authentication methods it supports and then pick the best one you allow it to
use. For some methods, this will induce an extra network round-trip. Set the actual name and pass-
word with theCURLOPT_PROXYUSERPWDoption. The bitmask can be constructed by or’ing
together the bits listed above for the CURLOPT_HTTPAUTH option. As of this writing, only
Basic, Digest and NTLM work. (Added in 7.10.7)

libcurl 7.18.0 5 Jan 2008 10

curl_easy_setopt(3) libcurl Manual curl_easy_setopt(3)

HTTP OPTIONS
CURLOPT_AUTOREFERER

Pass a non-zero parameter to enable this. When enabled, libcurl will automatically set the Referer:
field in requests where it follows a Location: redirect.

CURLOPT_ENCODING
Sets the contents of the Accept-Encoding: header sent in an HTTP request, and enables decoding
of a response when a Content-Encoding: header is received. Threeencodings are supported:iden-
tity, which does nothing,deflatewhich requests the server to compress its response using the zlib
algorithm, andgzip which requests the gzip algorithm. If a zero-length string is set, then an
Accept-Encoding: header containing all supported encodings is sent.

This is a request, not an order; the server may or may not do it. This option must be set (to any
non-NULL value) or else any unsolicited encoding done by the server is ignored. See the special
file lib/README.encoding for details.

CURLOPT_FOLLOWLOCATION
A non-zero parameter tells the library to follow any Location: header that the server sends as part
of an HTTP header.

This means that the library will re-send the same request on the new location and follow new
Location: headers all the way until no more such headers are returned.CURLOPT_MAXREDIRS
can be used to limit the number of redirects libcurl will follow.

CURLOPT_UNRESTRICTED_AUTH
A non-zero parameter tells the library it can continue to send authentication (user+password) when
following locations, even when hostname changed. This option is meaningful only when setting
CURLOPT_FOLLOWLOCATION.

CURLOPT_MAXREDIRS
Pass a long. The set number will be the redirection limit. If that many redirections have been fol-
lowed, the next redirect will cause an error (CURLE_TOO_MANY_REDIRECTS). This option
only makes sense if theCURLOPT_FOLLOWLOCATIONis used at the same time. Added in
7.15.1: Setting the limit to 0 will make libcurl refuse any redirect. Set it to -1 for an infinite num-
ber of redirects (which is the default)

CURLOPT_POST301
A non-zero parameter tells the library to respect RFC 2616/10.3.2 and not convert POST requests
into GET requests when following a 301 redirection. The non-RFC behaviour is ubiquitous in web
browsers, so the library does the conversion by default to maintain consistency. Howev er, a server
may requires a POST to remain a POST after such a redirection. This option is meaningful only
when settingCURLOPT_FOLLOWLOCATION. (Added in 7.17.1)

CURLOPT_PUT
A non-zero parameter tells the library to use HTTP PUT to transfer data. The data should be set
with CURLOPT_READDATA andCURLOPT_INFILESIZE.

This option is deprecated and starting with version 7.12.1 you should instead useCUR-
LOPT_UPLOAD.

CURLOPT_POST
A non-zero parameter tells the library to do a regular HTTP post. This will also make the library
use the a "Content-Type: application/x-www-form-urlencoded" header. (This is by far the most
commonly used POST method).

Use one ofCURLOPT_POSTFIELDSor CURLOPT_COPYPOSTFIELDSoptions to specify what
data to post andCURLOPT_POSTFIELDSIZEor CURLOPT_POSTFIELDSIZE_LARGEto set
the data size.

libcurl 7.18.0 5 Jan 2008 11

curl_easy_setopt(3) libcurl Manual curl_easy_setopt(3)

Optionally, you can provide data to POST using theCURLOPT_READFUNCTIONand CUR-
LOPT_READDATA options but then you must make sure to not setCURLOPT_POSTFIELDSto
anything but NULL. When providing data with a callback, you must transmit it using chunked
transfer-encoding or you must set the size of the data with theCURLOPT_POSTFIELDSIZEor
CURLOPT_POSTFIELDSIZE_LARGEoption. To enable chunked encoding, you simply pass in
the appropriate Transfer-Encoding header, see the post-callback.c example.

You can override the default POST Content-Type: header by setting your own with CUR-
LOPT_HTTPHEADER.

Using POST with HTTP 1.1 implies the use of a "Expect: 100-continue" header. You can disable
this header withCURLOPT_HTTPHEADERas usual.

If you use POST to a HTTP 1.1 server, you can send data without knowing the size before starting
the POST if you use chunked encoding. You enable this by adding a header like "Transfer-Encod-
ing: chunked" with CURLOPT_HTTPHEADER. With HTTP 1.0 or without chunked transfer, you
must specify the size in the request.

When setting CURLOPT_POST to a non-zero value, it will automatically setCUR-
LOPT_NOBODYto 0 (since 7.14.1).

If you issue a POST request and then want to make a HEAD or GET using the same re-used han-
dle, you must explicitly set the new request type usingCURLOPT_NOBODYor CUR-
LOPT_HTTPGETor similar.

CURLOPT_POSTFIELDS
Pass a void * as parameter, which should be the full data to post in an HTTP POST operation. You
must make sure that the data is formatted the way you want the server to receive it. libcurl will not
convert or encode it for you. Most web servers will assume this data to be url-encoded. Take note.

The pointed data are NOT copied by the library: as a consequence, they must be preserved by the
calling application until the transfer finishes.

This POST is a normal application/x-www-form-urlencoded kind (and libcurl will set that Con-
tent-Type by default when this option is used), which is the most commonly used one by HTML
forms. See also theCURLOPT_POST. Using CURLOPT_POSTFIELDSimplies CUR-
LOPT_POST.

If you want to do a zero-byte POST, you need to setCURLOPT_POSTFIELDSIZEexplicitly to
zero, as simply settingCURLOPT_POSTFIELDSto NULL or "" just effectively disables the send-
ing of the specified string. libcurl will instead assume that you’ll send the POST data using the
read callback!

Using POST with HTTP 1.1 implies the use of a "Expect: 100-continue" header. You can disable
this header withCURLOPT_HTTPHEADERas usual.

To make multipart/formdata posts (aka rfc1867-posts), check out theCURLOPT_HTTPPOST
option.

CURLOPT_POSTFIELDSIZE
If you want to post data to the server without letting libcurl do a strlen() to measure the data size,
this option must be used. When this option is used you can post fully binary data, which otherwise
is likely to fail. If this size is set to -1, the library will use strlen() to get the size.

libcurl 7.18.0 5 Jan 2008 12

curl_easy_setopt(3) libcurl Manual curl_easy_setopt(3)

CURLOPT_POSTFIELDSIZE_LARGE
Pass a curl_off_t as parameter. Use this to set the size of theCURLOPT_POSTFIELDSdata to
prevent libcurl from doing strlen() on the data to figure out the size. This is the large file version of
theCURLOPT_POSTFIELDSIZEoption. (Added in 7.11.1)

CURLOPT_COPYPOSTFIELDS
Pass a char * as parameter, which should be the full data to post in an HTTP POST operation. It
behaves as the CURLOPT_POSTFIELDSoption, but the original data are copied by the library,
allowing the application to overwrite the original data after setting this option.

Because data are copied, care must be taken when using this option in conjunction withCUR-
LOPT_POSTFIELDSIZEor CURLOPT_POSTFIELDSIZE_LARGE: If the size has not been set
prior to CURLOPT_COPYPOSTFIELDS, the data are assumed to be a NUL-terminated string;
else the stored size informs the library about the data byte count to copy. In any case, the size must
not be changed afterCURLOPT_COPYPOSTFIELDS, unless anotherCURLOPT_POSTFIELDS
or CURLOPT_COPYPOSTFIELDSoption is issued. (Added in 7.17.1)

CURLOPT_HTTPPOST
Tells libcurl you want a multipart/formdata HTTP POST to be made and you instruct what data to
pass on to the server. Pass a pointer to a linked list of curl_httppost structs as parameter. . The eas-
iest way to create such a list, is to usecurl_formadd(3)as documented. The data in this list must
remain intact until you close this curl handle again withcurl_easy_cleanup(3).

Using POST with HTTP 1.1 implies the use of a "Expect: 100-continue" header. You can disable
this header withCURLOPT_HTTPHEADERas usual.

When settingCURLOPT_HTTPPOST, it will automatically setCURLOPT_NOBODYto 0 (since
7.14.1).

CURLOPT_REFERER
Pass a pointer to a zero terminated string as parameter. It will be used to set the Referer: header in
the http request sent to the remote server. This can be used to fool servers or scripts. You can also
set any custom header withCURLOPT_HTTPHEADER.

CURLOPT_USERAGENT
Pass a pointer to a zero terminated string as parameter. It will be used to set the User-Agent:
header in the http request sent to the remote server. This can be used to fool servers or scripts. You
can also set any custom header withCURLOPT_HTTPHEADER.

CURLOPT_HTTPHEADER
Pass a pointer to a linked list of HTTP headers to pass to the server in your HTTP request. The
linked list should be a fully valid list ofstruct curl_slist structs properly filled in. Use
curl_slist_append(3)to create the list andcurl_slist_free_all(3)to clean up an entire list. If you
add a header that is otherwise generated and used by libcurl internally, your added one will be
used instead. If you add a header with no contents as in ’Accept:’ (no data on the right side of the
colon), the internally used header will get disabled. Thus, using this option you can add new head-
ers, replace internal headers and remove internal headers. To add a header with no contents, make
the contents be two quotes: "". The headers included in the linked list must not be CRLF-termi-
nated, because curl adds CRLF after each header item. Failure to comply with this will result in
strange bugs because the server will most likely ignore part of the headers you specified.

The first line in a request (containing the method, usually a GET or POST) is not a header and
cannot be replaced using this option. Only the lines following the request-line are headers. Adding
this method line in this list of headers will only cause your request to send an invalid header.

Pass a NULL to this to reset back to no custom headers.

libcurl 7.18.0 5 Jan 2008 13

curl_easy_setopt(3) libcurl Manual curl_easy_setopt(3)

The most commonly replaced headers have "shortcuts" in the optionsCURLOPT_COOKIE, CUR-
LOPT_USERAGENTandCURLOPT_REFERER.

CURLOPT_HTTP200ALIASES
Pass a pointer to a linked list of aliases to be treated as valid HTTP 200 responses. Some servers
respond with a custom header response line.For example, IceCast servers respond with "ICY 200
OK". By including this string in your list of aliases, the response will be treated as a valid HTTP
header line such as "HTTP/1.0 200 OK". (Added in 7.10.3)

The linked list should be a fully valid list of struct curl_slist structs, and be properly filled in.Use
curl_slist_append(3)to create the list andcurl_slist_free_all(3)to clean up an entire list.

The alias itself is not parsed for any version strings. Before libcurl 7.16.3, Libcurl used the value
set by optionCURLOPT_HTTP_VERSION, but starting with 7.16.3 the protocol is assumed to
match HTTP 1.0 when an alias matched.

CURLOPT_COOKIE
Pass a pointer to a zero terminated string as parameter. It will be used to set a cookie in the http
request. The format of the string should be NAME=CONTENTS, where NAME is the cookie
name and CONTENTS is what the cookie should contain.

If you need to set multiple cookies, you need to set them all using a single option and thus you
need to concatenate them all in one single string. Set multiple cookies in one string like this:
"name1=content1; name2=content2;" etc.

Using this option multiple times will only make the latest string override the previous ones.

CURLOPT_COOKIEFILE
Pass a pointer to a zero terminated string as parameter. It should contain the name of your file
holding cookie data to read. The cookie data may be in Netscape / Mozilla cookie data format or
just regular HTTP-style headers dumped to a file.

Given an empty or non-existing file or by passing the empty string (""), this option will enable
cookies for this curl handle, making it understand and parse received cookies and then use match-
ing cookies in future request.

If you use this option multiple times, you just add more files to read.Subsequent files will add
more cookies.

CURLOPT_COOKIEJAR
Pass a file name as char *, zero terminated. This will make libcurl write all internally known cook-
ies to the specified file whencurl_easy_cleanup(3)is called. If no cookies are known, no file will
be created. Specify "-" to instead have the cookies written to stdout. Using this option also enables
cookies for this session, so if you for example follow a location it will make matching cookies get
sent accordingly.

If the cookie jar file can’t be created or written to (when thecurl_easy_cleanup(3)is called),
libcurl will not and cannot report an error for this. UsingCURLOPT_VERBOSEor CUR-
LOPT_DEBUGFUNCTIONwill get a warning to display, but that is the only visible feedback you
get about this possibly lethal situation.

CURLOPT_COOKIESESSION
Pass a long set to non-zero to mark this as a new cookie "session". It will force libcurl to ignore all
cookies it is about to load that are "session cookies" from the previous session. By default, libcurl
always stores and loads all cookies, independent if they are session cookies are not. Session cook-
ies are cookies without expiry date and they are meant to be alive and existing for this "session"
only.

libcurl 7.18.0 5 Jan 2008 14

curl_easy_setopt(3) libcurl Manual curl_easy_setopt(3)

CURLOPT_COOKIELIST
Pass a char * to a cookie string. Cookie can be either in Netscape / Mozilla format or just regular
HTTP-style header (Set-Cookie: ...) format. If cURL cookie engine was not enabled it will enable
its cookie engine.Passing a magic string "ALL" will erase all cookies known by cURL. (Added in
7.14.1) Passing the special string "SESS" will only erase all session cookies known by cURL.
(Added in 7.15.4) Passing the special string "FLUSH" will write all cookies known by cURL to
the file specified byCURLOPT_COOKIEJAR. (Added in 7.17.1)

CURLOPT_HTTPGET
Pass a long. If the long is non-zero, this forces the HTTP request to get back to GET. usable if a
POST, HEAD, PUT or a custom request have been used previously using the same curl handle.

When settingCURLOPT_HTTPGETto a non-zero value, it will automatically setCUR-
LOPT_NOBODYto 0 (since 7.14.1).

CURLOPT_HTTP_VERSION
Pass a long, set to one of the values described below. They force libcurl to use the specific HTTP
versions. This is not sensible to do unless you have a good reason.

CURL_HTTP_VERSION_NONE
We don’t care about what version the library uses. libcurl will use whatever it thinks fit.

CURL_HTTP_VERSION_1_0
Enforce HTTP 1.0 requests.

CURL_HTTP_VERSION_1_1
Enforce HTTP 1.1 requests.

CURLOPT_IGNORE_CONTENT_LENGTH
Ignore the Content-Length header. This is useful for Apache 1.x (and similar servers) which will
report incorrect content length for files over 2 gigabytes. If this option is used, curl will not be able
to accurately report progress, and will simply stop the download when the server ends the connec-
tion. (added in 7.14.1)

CURLOPT_HTTP_CONTENT_DECODING
Pass a long to tell libcurl how to act on content decoding. If set to zero, content decoding will be
disabled. If set to 1 it is enabled. Note however that libcurl has no default content decoding but
requires you to useCURLOPT_ENCODINGfor that. (added in 7.16.2)

CURLOPT_HTTP_TRANSFER_DECODING
Pass a long to tell libcurl how to act on transfer decoding. If set to zero, transfer decoding will be
disabled, if set to 1 it is enabled (default). libcurl does chunked transfer decoding by default unless
this option is set to zero. (added in 7.16.2)

FTP OPTIONS
CURLOPT_FTPPORT

Pass a pointer to a zero terminated string as parameter. It will be used to get the IP address to use
for the ftp PORT instruction. The PORT instruction tells the remote server to connect to our speci-
fied IP address. The string may be a plain IP address, a host name, an network interface name
(under Unix) or just a ’-’ letter to let the library use your systems default IP address. Default FTP
operations are passive, and thus won’t use PORT.

You disable PORT again and go back to using the passive version by setting this option to NULL.

CURLOPT_QUOTE
Pass a pointer to a linked list of FTP or SFTP commands to pass to the server prior to your ftp
request. This will be done before any other commands are issued (even before the CWD command
for FTP). The linked list should be a fully valid list of ’struct curl_slist’ structs properly filled in
with text strings. Usecurl_slist_append(3)to append strings (commands) to the list, and clear the
entire list afterwards withcurl_slist_free_all(3). Disable this operation again by setting a NULL to

libcurl 7.18.0 5 Jan 2008 15

curl_easy_setopt(3) libcurl Manual curl_easy_setopt(3)

this option. The valid SFTP commands are: chgrp, chmod, chown, ln, mkdir, pwd, rename, rm,
rmdir, symlink. (SFTP support added in 7.16.3)

CURLOPT_POSTQUOTE
Pass a pointer to a linked list of FTP or SFTP commands to pass to the server after your ftp trans-
fer request. The linked list should be a fully valid list of struct curl_slist structs properly filled in as
described forCURLOPT_QUOTE. Disable this operation again by setting a NULL to this option.

CURLOPT_PREQUOTE
Pass a pointer to a linked list of FTP commands to pass to the server after the transfer type is set.
The linked list should be a fully valid list of struct curl_slist structs properly filled in as described
for CURLOPT_QUOTE. Disable this operation again by setting a NULL to this option. Before
version 7.15.6, if you also setCURLOPT_NOBODYnon-zero, this option didn’t work.

CURLOPT_DIRLISTONLY
A non-zero parameter tells the library to just list the names of files in a directory, instead of doing
a full directory listing that would include file sizes, dates etc. This works for FTP and SFTP URLs.

This causes an FTP NLST command to be sent on an FTP server. Bew are that some FTP servers
list only files in their response to NLST; they might not include subdirectories and symbolic links.

(This option was known as CURLOPT_FTPLISTONLY up to 7.16.4)

CURLOPT_APPEND
A non-zero parameter tells the library to append to the remote file instead of overwrite it. This is
only useful when uploading to an ftp site.

(This option was known as CURLOPT_FTPAPPEND up to 7.16.4)

CURLOPT_FTP_USE_EPRT
Pass a long. If the value is non-zero, it tells curl to use the EPRT (and LPRT) command when
doing active FTP downloads (which is enabled byCURLOPT_FTPPORT). Using EPRT means
that it will first attempt to use EPRT and then LPRT before using PORT, but if you pass FALSE
(zero) to this option, it will not try using EPRT or LPRT, only plain PORT. (Added in 7.10.5)

If the server is an IPv6 host, this option will have no effect as of 7.12.3.

CURLOPT_FTP_USE_EPSV
Pass a long. If the value is non-zero, it tells curl to use the EPSV command when doing passive
FTP downloads (which it always does by default). Using EPSV means that it will first attempt to
use EPSV before using PASV, but if you pass FALSE (zero) to this option, it will not try using
EPSV, only plain PASV.

If the server is an IPv6 host, this option will have no effect as of 7.12.3.

CURLOPT_FTP_CREATE_MISSING_DIRS
Pass a long. If the value is non-zero, curl will attempt to create any remote directory that it fails to
CWD into. CWD is the command that changes working directory. (Added in 7.10.7)

This setting also applies to SFTP-connections. curl will attempt to create the remote directory if it
can’t obtain a handle to the target-location. The creation will fail if a file of the same name as the
directory to create already exists or lack of permissions prevents creation. (Added in 7.16.3)

CURLOPT_FTP_RESPONSE_TIMEOUT
Pass a long. Causes curl to set a timeout period (in seconds) on the amount of time that the server
is allowed to take in order to generate a response message for a command before the session is
considered hung.While curl is waiting for a response, this value overrides CURLOPT_TIME-
OUT. It is recommended that if used in conjunction withCURLOPT_TIMEOUT, you setCUR-
LOPT_FTP_RESPONSE_TIMEOUTto a value smaller thanCURLOPT_TIMEOUT. (Added in

libcurl 7.18.0 5 Jan 2008 16

curl_easy_setopt(3) libcurl Manual curl_easy_setopt(3)

7.10.8)

CURLOPT_FTP_ALTERNATIVE_TO_USER
Pass a char * as parameter, pointing to a string which will be used to authenticate if the usual FTP
"USER user" and "PASS password" negotiation fails. This is currently only known to be required
when connecting to Tumbleweed’s Secure Transport FTPS server using client certificates for
authentication. (Added in 7.15.5)

CURLOPT_FTP_SKIP_PASV_IP
Pass a long. If set to a non-zero value, it instructs libcurl to not use the IP address the server sug-
gests in its 227-response to libcurl’s PASV command when libcurl connects the data connection.
Instead libcurl will re-use the same IP address it already uses for the control connection. But it will
use the port number from the 227-response. (Added in 7.14.2)

This option has no effect if PORT, EPRT or EPSV is used instead of PASV.

CURLOPT_USE_SSL
Pass a long using one of the values from below, to make libcurl use your desired level of SSL for
the ftp transfer. (Added in 7.11.0)

(This option was known as CURLOPT_FTP_SSL up to 7.16.4, and the constants were known as
CURLFTPSSL_*)

CURLUSESSL_NONE
Don’t attempt to use SSL.

CURLUSESSL_TRY
Try using SSL, proceed as normal otherwise.

CURLUSESSL_CONTROL
Require SSL for the control connection or fail withCURLE_USE_SSL_FAILED.

CURLUSESSL_ALL
Require SSL for all communication or fail withCURLE_USE_SSL_FAILED.

CURLOPT_FTPSSLAUTH
Pass a long using one of the values from below, to alter how libcurl issues "AUTH TLS" or
"AUTH SSL" when FTP over SSL is activated (seeCURLOPT_FTP_SSL). (Added in 7.12.2)

CURLFTPAUTH_DEFAULT
Allow libcurl to decide

CURLFTPAUTH_SSL
Try "AUTH SSL" first, and only if that fails try "AUTH TLS"

CURLFTPAUTH_TLS
Try "AUTH TLS" first, and only if that fails try "AUTH SSL"

CURLOPT_FTP_SSL_CCC
If enabled, this option makes libcurl use CCC (Clear Command Channel). It shuts down the
SSL/TLS layer after authenticating. The rest of the control channel communication will be unen-
crypted. This allows NAT routers to follow the FTP transaction. Pass a long using one of the val-
ues below. (Added in 7.16.1)

CURLFTPSSL_CCC_NONE
Don’t attempt to use CCC.

CURLFTPSSL_CCC_PASSIVE
Do not initiate the shutdown, but wait for the server to do it. Do not send a reply.

CURLFTPSSL_CCC_ACTIVE
Initiate the shutdown and wait for a reply.

libcurl 7.18.0 5 Jan 2008 17

curl_easy_setopt(3) libcurl Manual curl_easy_setopt(3)

CURLOPT_FTP_ACCOUNT
Pass a pointer to a zero-terminated string (or NULL to disable). When an FTP server asks for
"account data" after user name and password has been provided, this data is sent off using the
ACCT command. (Added in 7.13.0)

CURLOPT_FTP_FILEMETHOD
Pass a long that should have one of the following values. This option controls what method libcurl
should use to reach a file on a FTP(S) server. The argument should be one of the following alterna-
tives:

CURLFTPMETHOD_MULTICWD
libcurl does a single CWD operation for each path part in the given URL. For deep hier-
archies this means very many commands. This is how RFC1738 says it should be done.
This is the default but the slowest behavior.

CURLFTPMETHOD_NOCWD
libcurl does no CWD at all. libcurl will do SIZE, RETR, STOR etc and give a full path to
the server for all these commands. This is the fastest behavior.

CURLFTPMETHOD_SINGLECWD
libcurl does one CWD with the full target directory and then operates on the file "nor-
mally" (like in the multicwd case). This is somewhat more standards compliant than
’nocwd’ but without the full penalty of ’multicwd’.

PROT OCOL OPTIONS
CURLOPT_TRANSFERTEXT

A non-zero parameter tells the library to use ASCII mode for ftp transfers, instead of the default
binary transfer. For win32 systems it does not set the stdout to binary mode. This option can be
usable when transferring text data between systems with different views on certain characters,
such as newlines or similar.

libcurl does not do a complete ASCII conversion when doing ASCII transfers over FTP. This is a
known limitation/flaw that nobody has rectified. libcurl simply sets the mode to ascii and performs
a standard transfer.

CURLOPT_PROXY_TRANSFER_MODE
Pass a long. If the value is set to 1 (one), it tells libcurl to set the transfer mode (binary or ASCII)
for FTP transfers done via an HTTP proxy, by appending ;type=a or ;type=i to the URL. Without
this setting, or it being set to 0 (zero, the default), CURLOPT_TRANSFERTEXThas no effect
when doing FTP via a proxy. Bew are that not all proxies support this feature. (Added in 7.18.0)

CURLOPT_CRLF
Convert Unix newlines to CRLF newlines on transfers.

CURLOPT_RANGE
Pass a char * as parameter, which should contain the specified range you want. It should be in the
format "X-Y", where X or Y may be left out. HTTP transfers also support several intervals, sepa-
rated with commas as in"X-Y,N-M". Using this kind of multiple intervals will cause the HTTP
server to send the response document in pieces (using standard MIME separation techniques). Pass
a NULL to this option to disable the use of ranges.

Ranges work on HTTP, FTP and FILE (since 7.18.0) transfers only.

CURLOPT_RESUME_FROM
Pass a long as parameter. It contains the offset in number of bytes that you want the transfer to
start from. Set this option to 0 to make the transfer start from the beginning (effectively disabling
resume). For FTP, set this option to -1 to make the transfer start from the end of the target file (use-
ful to continue an interrupted upload).

libcurl 7.18.0 5 Jan 2008 18

curl_easy_setopt(3) libcurl Manual curl_easy_setopt(3)

CURLOPT_RESUME_FROM_LARGE
Pass a curl_off_t as parameter. It contains the offset in number of bytes that you want the transfer
to start from. (Added in 7.11.0)

CURLOPT_CUSTOMREQUEST
Pass a pointer to a zero terminated string as parameter. It will be used instead of GET or HEAD
when doing an HTTP request, or instead of LIST or NLST when doing an ftp directory listing.
This is useful for doing DELETE or other more or less obscure HTTP requests. Don’t do this at
will, make sure your server supports the command first.

Note that libcurl will still act and assume the keyword it would use if you didn’t set your custom
one is the one in use and it will act according to that. Thus, changing this to a HEAD when libcurl
otherwise would do a GET might cause libcurl to act funny, and similar. To switch to a proper
HEAD, useCURLOPT_NOBODY, to switch to a proper POST, use CURLOPT_POSTor CUR-
LOPT_POSTFIELDSand so on.

Restore to the internal default by setting this to NULL.

Many people have wrongly used this option to replace the entire request with their own, including
multiple headers and POST contents. While that might work in many cases, it will cause libcurl to
send invalid requests and it could possibly confuse the remote server badly. UseCURLOPT_POST
and CURLOPT_POSTFIELDSto set POST data. UseCURLOPT_HTTPHEADERto replace or
extend the set of headers sent by libcurl. UseCURLOPT_HTTP_VERSIONto change HTTP ver-
sion.

CURLOPT_FILETIME
Pass a long. If it is a non-zero value, libcurl will attempt to get the modification date of the remote
document in this operation. This requires that the remote server sends the time or replies to a time
querying command. Thecurl_easy_getinfo(3)function with theCURLINFO_FILETIMEargument
can be used after a transfer to extract the received time (if any).

CURLOPT_NOBODY
A non-zero parameter tells the library to not include the body-part in the output. This is only rele-
vant for protocols that have separate header and body parts. On HTTP(S) servers, this will make
libcurl do a HEAD request.

To change request to GET, you should useCURLOPT_HTTPGET. Change request to POST with
CURLOPT_POSTetc.

CURLOPT_INFILESIZE
When uploading a file to a remote site, this option should be used to tell libcurl what the expected
size of the infile is. This value should be passed as a long. See alsoCURLOPT_INFILE-
SIZE_LARGE.

For uploading using SCP, this option orCURLOPT_INFILESIZE_LARGEis mandatory.

Note that this option does not limit how much data libcurl will actually send, as that is controlled
entirely by what the read callback returns.

CURLOPT_INFILESIZE_LARGE
When uploading a file to a remote site, this option should be used to tell libcurl what the expected
size of the infile is. This value should be passed as a curl_off_t. (Added in 7.11.0)

For uploading using SCP, this option orCURLOPT_INFILESIZEis mandatory.

Note that this option does not limit how much data libcurl will actually send, as that is controlled
entirely by what the read callback returns.

libcurl 7.18.0 5 Jan 2008 19

curl_easy_setopt(3) libcurl Manual curl_easy_setopt(3)

CURLOPT_UPLOAD
A non-zero parameter tells the library to prepare for an upload. TheCURLOPT_READDATA and
CURLOPT_INFILESIZEor CURLOPT_INFILESIZE_LARGEoptions are also interesting for
uploads. If the protocol is HTTP, uploading means using the PUT request unless you tell libcurl
otherwise.

Using PUT with HTTP 1.1 implies the use of a "Expect: 100-continue" header. You can disable
this header withCURLOPT_HTTPHEADERas usual.

If you use PUT to a HTTP 1.1 server, you can upload data without knowing the size before start-
ing the transfer if you use chunked encoding. You enable this by adding a header like "Transfer-
Encoding: chunked" withCURLOPT_HTTPHEADER. With HTTP 1.0 or without chunked trans-
fer, you must specify the size.

CURLOPT_MAXFILESIZE
Pass a long as parameter. This allows you to specify the maximum size (in bytes) of a file to down-
load. If the file requested is larger than this value, the transfer will not start and CURLE_FILE-
SIZE_EXCEEDED will be returned.

The file size is not always known prior to download, and for such files this option has no effect
ev en if the file transfer ends up being larger than this given limit. This concerns both FTP and
HTTP transfers.

CURLOPT_MAXFILESIZE_LARGE
Pass a curl_off_t as parameter. This allows you to specify the maximum size (in bytes) of a file to
download. If the file requested is larger than this value, the transfer will not start and
CURLE_FILESIZE_EXCEEDEDwill be returned. (Added in 7.11.0)

The file size is not always known prior to download, and for such files this option has no effect
ev en if the file transfer ends up being larger than this given limit. This concerns both FTP and
HTTP transfers.

CURLOPT_TIMECONDITION
Pass a long as parameter. This defines how theCURLOPT_TIMEVALUEtime value is treated. You
can set this parameter toCURL_TIMECOND_IFMODSINCEor CURL_TIMECOND_IFUN-
MODSINCE. This feature applies to HTTP and FTP.

The last modification time of a file is not always known and in such instances this feature will have
no effect even if the given time condition would have not been met.

CURLOPT_TIMEVALUE
Pass a long as parameter. This should be the time in seconds since 1 jan 1970, and the time will be
used in a condition as specified withCURLOPT_TIMECONDITION.

CONNECTION OPTIONS
CURLOPT_TIMEOUT

Pass a long as parameter containing the maximum time in seconds that you allow the libcurl trans-
fer operation to take. Normally, name lookups can take a considerable time and limiting operations
to less than a few minutes risk aborting perfectly normal operations. This option will cause curl to
use the SIGALRM to enable time-outing system calls.

In unix-like systems, this might cause signals to be used unlessCURLOPT_NOSIGNALis set.

CURLOPT_TIMEOUT_MS
Like CURLOPT_TIMEOUTbut takes number of milliseconds instead. If libcurl is built to use the
standard system name resolver, that part will still use full-second resolution for timeouts. (Added
in 7.16.2)

libcurl 7.18.0 5 Jan 2008 20

curl_easy_setopt(3) libcurl Manual curl_easy_setopt(3)

CURLOPT_LOW_SPEED_LIMIT
Pass a long as parameter. It contains the transfer speed in bytes per second that the transfer should
be below during CURLOPT_LOW_SPEED_TIMEseconds for the library to consider it too slow
and abort.

CURLOPT_LOW_SPEED_TIME
Pass a long as parameter. It contains the time in seconds that the transfer should be below the
CURLOPT_LOW_SPEED_LIMITfor the library to consider it too slow and abort.

CURLOPT_MAX_SEND_SPEED_LARGE
Pass a curl_off_t as parameter. If an upload exceeds this speed on cumulative average during the
transfer, the transfer will pause to keep the average rate less than or equal to the parameter value.
Defaults to unlimited speed. (Added in 7.15.5)

CURLOPT_MAX_RECV_SPEED_LARGE
Pass a curl_off_t as parameter. If a download exceeds this speed on cumulative average during the
transfer, the transfer will pause to keep the average rate less than or equal to the parameter value.
Defaults to unlimited speed. (Added in 7.15.5)

CURLOPT_MAXCONNECTS
Pass a long. The set number will be the persistent connection cache size. The set amount will be
the maximum amount of simultaneously open connections that libcurl may cache in this easy han-
dle. Default is 5, and there isn’t much point in changing this value unless you are perfectly aware
of how this work and changes libcurl’s behaviour. This concerns connection using any of the pro-
tocols that support persistent connections.

When reaching the maximum limit, curl closes the oldest one in the cache to prevent the number
of open connections to increase.

If you already have performed transfers with this curl handle, setting a smaller MAXCONNECTS
than before may cause open connections to get closed unnecessarily.

Note that if you add this easy handle to a multi handle, this setting is not being acknowledged, but
you must instead usecurl_multi_setopt(3)and theCURLMOPT_MAXCONNECTSoption.

CURLOPT_CLOSEPOLICY
(Obsolete) This option does nothing.

CURLOPT_FRESH_CONNECT
Pass a long. Set to non-zero to make the next transfer use a new (fresh) connection by force. If the
connection cache is full before this connection, one of the existing connections will be closed as
according to the selected or default policy. This option should be used with caution and only if you
understand what it does. Set this to 0 to have libcurl attempt re-using an existing connection
(default behavior).

CURLOPT_FORBID_REUSE
Pass a long. Set to non-zero to make the next transfer explicitly close the connection when done.
Normally, libcurl keep all connections alive when done with one transfer in case there comes a
succeeding one that can re-use them.This option should be used with caution and only if you
understand what it does. Set to 0 to have libcurl keep the connection open for possibly later re-use
(default behavior).

CURLOPT_CONNECTTIMEOUT
Pass a long. It should contain the maximum time in seconds that you allow the connection to the
server to take. Thisonly limits the connection phase, once it has connected, this option is of no
more use. Set to zero to disable connection timeout (it will then only timeout on the system’s inter-
nal timeouts). See also theCURLOPT_TIMEOUToption.

In unix-like systems, this might cause signals to be used unlessCURLOPT_NOSIGNALis set.

libcurl 7.18.0 5 Jan 2008 21

curl_easy_setopt(3) libcurl Manual curl_easy_setopt(3)

CURLOPT_CONNECTTIMEOUT_MS
Like CURLOPT_CONNECTTIMEOUTbut takes number of milliseconds instead. If libcurl is built
to use the standard system name resolver, that part will still use full-second resolution for time-
outs. (Added in 7.16.2)

CURLOPT_IPRESOLVE
Allows an application to select what kind of IP addresses to use when resolving host names. This
is only interesting when using host names that resolve addresses using more than one version of
IP. The allowed values are:

CURL_IPRESOLVE_WHATEVER
Default, resolves addresses to all IP versions that your system allows.

CURL_IPRESOLVE_V4
Resolve to ipv4 addresses.

CURL_IPRESOLVE_V6
Resolve to ipv6 addresses.

CURLOPT_CONNECT_ONLY
Pass a long. A non-zero parameter tells the library to perform any required proxy authentication
and connection setup, but no data transfer.

This option is useful with theCURLINFO_LASTSOCKEToption to curl_easy_getinfo(3). The
library can set up the connection and then the application can obtain the most recently used socket
for special data transfers. (Added in 7.15.2)

SSL and SECURITY OPTIONS
CURLOPT_SSLCERT

Pass a pointer to a zero terminated string as parameter. The string should be the file name of your
certificate. The default format is "PEM" and can be changed withCURLOPT_SSLCERTTYPE.

With NSS this is the nickname of the certificate you wish to authenticate with.

CURLOPT_SSLCERTTYPE
Pass a pointer to a zero terminated string as parameter. The string should be the format of your cer-
tificate. Supported formats are "PEM" and "DER". (Added in 7.9.3)

CURLOPT_SSLKEY
Pass a pointer to a zero terminated string as parameter. The string should be the file name of your
private key. The default format is "PEM" and can be changed withCURLOPT_SSLKEYTYPE.

CURLOPT_SSLKEYTYPE
Pass a pointer to a zero terminated string as parameter. The string should be the format of your pri-
vate key. Supported formats are "PEM", "DER" and "ENG".

The format "ENG" enables you to load the private key from a crypto engine. In this caseCUR-
LOPT_SSLKEYis used as an identifier passed to the engine. You have to set the crypto engine
with CURLOPT_SSLENGINE. "DER" format key file currently does not work because of a bug in
OpenSSL.

CURLOPT_KEYPASSWD
Pass a pointer to a zero terminated string as parameter. It will be used as the password required to
use theCURLOPT_SSLKEYor CURLOPT_SSH_PRIVATE_KEYFILE private key. You never
needed a pass phrase to load a certificate but you need one to load your private key.

(This option was known as CURLOPT_SSLKEYPASSWD up to 7.16.4 and CUR-
LOPT_SSLCERTPASSWD up to 7.9.2)

libcurl 7.18.0 5 Jan 2008 22

curl_easy_setopt(3) libcurl Manual curl_easy_setopt(3)

CURLOPT_SSLENGINE
Pass a pointer to a zero terminated string as parameter. It will be used as the identifier for the
crypto engine you want to use for your private key.

If the crypto device cannot be loaded,CURLE_SSL_ENGINE_NOTFOUNDis returned.

CURLOPT_SSLENGINE_DEFAULT
Sets the actual crypto engine as the default for (asymmetric) crypto operations.

If the crypto device cannot be set,CURLE_SSL_ENGINE_SETFAILEDis returned.

CURLOPT_SSLVERSION
Pass a long as parameter to control what version of SSL/TLS to attempt to use.The available
options are:

CURL_SSLVERSION_DEFAULT
The default action. When libcurl built with OpenSSL or NSS, this will attempt to figure
out the remote SSL protocol version. Unfortunately there are a lot of ancient and broken
servers in use which cannot handle this technique and will fail to connect. When libcurl is
built with GnuTLS, this will mean SSLv3.

CURL_SSLVERSION_TLSv1
Force TLSv1

CURL_SSLVERSION_SSLv2
Force SSLv2

CURL_SSLVERSION_SSLv3
Force SSLv3

CURLOPT_SSL_VERIFYPEER
Pass a long as parameter.

This option determines whether curl verifies the authenticity of the peer’s certificate. Anonzero
value means curl verifies; zero means it doesn’t. Thedefault is nonzero, but before 7.10, it was
zero.

When negotiating an SSL connection, the server sends a certificate indicating its identity. Curl
verifies whether the certificate is authentic, i.e. that you can trust that the server is who the certifi-
cate says it is. This trust is based on a chain of digital signatures, rooted in certification authority
(CA) certificates you supply. As of 7.10, curl installs a default bundle of CA certificates and you
can specify alternate certificates with theCURLOPT_CAINFOoption or theCURLOPT_CAPATH
option.

WhenCURLOPT_SSL_VERIFYPEERis nonzero, and the verification fails to prove that the cer-
tificate is authentic, the connection fails. Whenthe option is zero, the connection succeeds regard-
less.

Authenticating the certificate is not by itself very useful.You typically want to ensure that the
server, as authentically identified by its certificate, is the server you mean to be talking to.Use
CURLOPT_SSL_VERIFYHOSTto control that.

CURLOPT_CAINFO
Pass a char * to a zero terminated string naming a file holding one or more certificates to verify the
peer with. This makes sense only when used in combination with theCURLOPT_SSL_VERI-
FYPEERoption. If CURLOPT_SSL_VERIFYPEERis zero,CURLOPT_CAINFOneed not even
indicate an accessible file.

Note that option is by default set to the system path where libcurl’s cacert bundle is assumed to be

libcurl 7.18.0 5 Jan 2008 23

curl_easy_setopt(3) libcurl Manual curl_easy_setopt(3)

stored, as established at build time.

When built against NSS this is the directory that the NSS certificate database resides in.

CURLOPT_CAPATH
Pass a char * to a zero terminated string naming a directory holding multiple CA certificates to
verify the peer with. The certificate directory must be prepared using the openssl c_rehash utility.
This makes sense only when used in combination with theCURLOPT_SSL_VERIFYPEERoption.
If CURLOPT_SSL_VERIFYPEERis zero,CURLOPT_CAPATH need not even indicate an accessi-
ble path. The CURLOPT_CAPATH function apparently does not work in Windows due to some
limitation in openssl. This option is OpenSSL-specific and does nothing if libcurl is built to use
GnuTLS.

CURLOPT_RANDOM_FILE
Pass a char * to a zero terminated file name. The file will be used to read from to seed the random
engine for SSL. The more random the specified file is, the more secure the SSL connection will
become.

CURLOPT_EGDSOCKET
Pass a char * to the zero terminated path name to the Entropy Gathering Daemon socket. It will be
used to seed the random engine for SSL.

CURLOPT_SSL_VERIFYHOST
Pass a long as parameter.

This option determines whether libcurl verifies that the server cert is for the server it is known as.

When negotiating an SSL connection, the server sends a certificate indicating its identity.

When CURLOPT_SSL_VERIFYHOSTis 2, that certificate must indicate that the server is the
server to which you meant to connect, or the connection fails.

Curl considers the server the intended one when the Common Name field or a Subject Alternate
Name field in the certificate matches the host name in the URL to which you told Curl to connect.

When the value is 1, the certificate must contain a Common Name field, but it doesn’t matter what
name it says. (This is not ordinarily a useful setting).

When the value is 0, the connection succeeds regardless of the names in the certificate.

The default, since 7.10, is 2.

The checking this option controls is of the identity that the server claims. The server could be
lying. To control lying, seeCURLOPT_SSL_VERIFYPEER.

CURLOPT_SSL_CIPHER_LIST
Pass a char *, pointing to a zero terminated string holding the list of ciphers to use for the SSL
connection. The list must be syntactically correct, it consists of one or more cipher strings sepa-
rated by colons. Commas or spaces are also acceptable separators but colons are normally used, , −
and + can be used as operators.

For OpenSSL and GnuTLS valid examples of cipher lists include ’RC4-SHA’, ´SHA1+DES´,
’TLSv1’ and ’DEFAULT’. The default list is normally set when you compile OpenSSL.

You’ll find more details about cipher lists on this URL:
http://www.openssl.org/docs/apps/ciphers.html

libcurl 7.18.0 5 Jan 2008 24

curl_easy_setopt(3) libcurl Manual curl_easy_setopt(3)

For NSS valid examples of cipher lists include ’rsa_rc4_128_md5’, ´rsa_aes_128_sha´, etc. With
NSS you don’t add/remove ciphers. If one uses this option then all known ciphers are disabled and
only those passed in are enabled.

You’ll find more details about the NSS cipher lists on this URL:http://directory.fedora.red-
hat.com/docs/mod_nss.html#Directives

CURLOPT_SSL_SESSIONID_CACHE
Pass a long set to 0 to disable libcurl’s use of SSL session-ID caching. Set this to 1 to enable it. By
default all transfers are done using the cache. Note that while nothing ever should get hurt by
attempting to reuse SSL session-IDs, there seem to be broken SSL implementations in the wild
that may require you to disable this in order for you to succeed. (Added in 7.16.0)

CURLOPT_KRBLEVEL
Pass a char * as parameter. Set the kerberos security level for FTP; this also enables kerberos
aw areness. Thisis a string, ’clear’, ’safe’, of these, ’private’ will be used. Set the string to NULL
to disable kerberos support for FTP.

(This option was known as CURLOPT_KRB4LEVEL up to 7.16.3)

SSH OPTIONS
CURLOPT_SSH_AUTH_TYPES

Pass a long set to a bitmask consisting of one or more of CURLSSH_AUTH_PUBLICKEY,
CURLSSH_AUTH_PASSWORD, CURLSSH_AUTH_HOST, CURLSSH_AUTH_KEYBOARD.
Set CURLSSH_AUTH_ANY to let libcurl pick one. (Added in 7.16.1)

CURLOPT_SSH_HOST_PUBLIC_KEY_MD5
Pass a char * pointing to a string containing 32 hexadecimal digits. The string should be the 128
bit MD5 cheksum of the remote host’s public key, and libcurl will reject the connection to the host
unless the md5sums match. This option is only for SCP and SFTP transfers. (Added in 7.17.1)

CURLOPT_SSH_PUBLIC_KEYFILE
Pass a char * pointing to a file name for your public key. If not used, libcurl defaults to using
˜/.ssh/id_dsa.pub. (Added in 7.16.1)

CURLOPT_SSH_PRIVATE_KEYFILE
Pass a char * pointing to a file name for your private key. If not used, libcurl defaults to using
˜/.ssh/id_dsa. If the file is password-protected, set the password withCURLOPT_KEYPASSWD.
(Added in 7.16.1)

OTHER OPTIONS
CURLOPT_PRIVATE

Pass a void * as parameter, pointing to data that should be associated with this curl handle.The
pointer can subsequently be retrieved usingcurl_easy_getinfo(3)with the CURLINFO_PRIVATE
option. libcurl itself does nothing with this data. (Added in 7.10.3)

CURLOPT_SHARE
Pass a share handle as a parameter. The share handle must have been created by a previous call to
curl_share_init(3). Setting this option, will make this curl handle use the data from the shared han-
dle instead of keeping the data to itself. This enables several curl handles to share data. If the curl
handles are used simultaneously, you MUST use the locking methods in the share handle. See
curl_share_setopt(3)for details.

If you add a share that is set to share cookies, your easy handle will use that cookie cache and get
the cookie engine enabled. If you unshare an object that were using cookies (or change to another
object that doesn’t share cookies), the easy handle will get its cookie engine disabled.

Data that the share object is not set to share will be dealt with the usual way, as if no share was

libcurl 7.18.0 5 Jan 2008 25

curl_easy_setopt(3) libcurl Manual curl_easy_setopt(3)

used.

CURLOPT_NEW_FILE_PERMS
Pass a long as a parameter, containing the value of the permissions that will be assigned to newly
created files on the remote server. The default value is0644, but any valid value can be used.The
only protocols that can use this aresftp://, scp://andfile://. (Added in 7.16.4)

CURLOPT_NEW_DIRECTORY_PERMS
Pass a long as a parameter, containing the value of the permissions that will be assigned to newly
created directories on the remote server. The default value is0755, but any valid value can be
used. Theonly protocols that can use this aresftp://, scp://andfile://. (Added in 7.16.4)

TELNET OPTIONS
CURLOPT_TELNETOPTIONS

Provide a pointer to a curl_slist with variables to pass to the telnet negotiations. The variables
should be in the format <option=value>. libcurl supports the options ’TTYPE’, ’XDISPLOC’ and
’NEW_ENV’. See the TELNET standard for details.

RETURN VALUE
CURLE_OK (zero) means that the option was set properly, non-zero means an error occurred as
<curl/curl.h> defines. See thelibcurl-errors(3)man page for the full list with descriptions.

If you try to set an option that libcurl doesn’t know about, perhaps because the library is too old to support
it or the option was removed in a recent version, this function will returnCURLE_FAILED_INIT.

SEE ALSO
curl_easy_init(3), curl_easy_cleanup(3), curl_easy_reset(3),

libcurl 7.18.0 5 Jan 2008 26

