
			 HEXEN Specs v1.00

		 The Official Hexen Technical Specs
		 Author: Ben Morris (bmorris@islandnet.com)
		Information from Raven provided by Ben Gokey
	 Additional information & corrections by Jack Vermeulen,
			 Sensor Based Systems, Inc.

			 [Disclaimer]

 The text contained in this document is for informational purposes only.
 If you decide to use this information in any way, neither id Software,
 Raven Software, Ben Morris, nor SBS can be held responsible for any damages
 or losses (including, but not limited to: dismembered bodily parts,
 telefrags and lack of sleep) incurred by this information's use. Although
 this is an "Official" specification, some of the information contained
 within might be old, or just plain typed in wrong. You have been warned.

				 !!!

 NB: This version of the specs, 0.9, is a preliminary release. Most of
 the information here is tried and true, but there's a good chance there
 are errors in the file. If something doesn't look right, or really IS
 wrong, please contact me (Ben Morris) at the address above. Please do
 NOT contact me about new versions of the specs; I will release the new
 versions when they are ready. Thanks.

 NOTE :
 This document was edited and reformatted with some additions to
 make it easier to view on screen or to clarify. The form feeds were
 removed to save paper. Sections were corrected or added as noted.

Table of Contents (added to original)
==========

 1. About this file
 2. Definitions used in this File
 3. Introduction to Hexen
 4. Hexen Data Structures
 5. Hexen Script Language
 6. Flats with special properties
 7. The MAPINFO lump
 8. PolyObjects
 9. List of Spawnable Objects
 10. List of Activateable/Deactivateable Objects
 11. List of THINGS that require arguments
 12. Sector Specials
 13. Action Specials
 14. Sector Sounds for ChangeSectorSound() special
 15. Sounds for ThingSound() (added)
 16. Key Numbers

1
.

About This File
===========
==

 This file was written for those who are interested in the inner workings of
 Hexen. It doesn't contain playing tips or information on how to get Hexen
 working on your system.

 This file is intended to be supplementary to Matt Fell's "Unofficial DOOM
 Specs", which probably came with your copy of DOOM or DOOM][. Wherever
 it's relevant, this file refers to a specific section in the DOOM specs (be
 sure you have version 1.666 or later!), so it's a good idea to have a copy
 at hand.

 You can also refer to the online Help in DeeP for further reference to
 basic definitions.

2.
 Definitions used in this File
==============
========

 Angle [0..255] Used in "angle" parameters to Special types:

		0 East 32 Northeast
		64 North 96 Northwest
		128 West 160 Southwest
		192 South 224 Southeast

	 * NOTE that this differs from DOOM/Heretic in that 45/90
		degree increments are not used. However, this difference
		does _not_ apply for the angles used for the THINGS in
		map editing - they are the same as DOOM's (eg: 0 = East,
		90 = North, etc.)

 Tics Time unit of length 1/35 second. So, 35 tics = 1 second.

 Octics Time unit of length 8 tics. So, 8 octics = 1 second.

3.
Introduction to Hexen
===========
=======

 Hexen is the sequel to Heretic, Raven Software's first collaboration with id
 Software.

 Hexen's major difference from Heretic and DOOM is its programmability.
 Hexen features a powerful script language that can be used to create a wide
 variety of in-game effects such as traps, puzzles and even earthquakes!

4.
 Hexen Data Structures
=============
======

 This section outlines the format of the new data blocks in a Hexen map -
 the LINEDEF and THING structures. These structures have changed from the
 versions used in DOOM and Heretic [see DOOM Specs ref and DeeP help].

 The Hexen LINEDEF structure

 Offset Size Meaning

 0 word the line's start-vertex
 2 word the line's end-vertex
 4 word line flags (see below)
 6 byte special type (see [Specials])
 7 5 bytes special arguments
 12 word the line's right sidedef number
 14 word the line's left sidedef number

 Line Flags

 The following flags are starred with an asterisk if they're new for
 Hexen:

 Bits Meaning when Set

 0 impassable - the line cannot be crossed.
 1 impassable to monsters only.
 2 two-sided
 3 upper texture is unpegged (drawn from top-down)
 4 lower/middle texture is unpegged (drawn from bottom-up)
 5 secret - the line appears as impassable on the automap.
 6 sound can't travel through the line for monsters' ears.
 7 never draw the line on the auto-map, even with the
		map cheat enabled.
 8 the line is always drawn on the auto-map, even if it
		hasn't been seen by the player.

 * 9 the line's special ([3-1]) is repeatable, ie: it can
		be activated more than once.
 * 10..12 the line's special activation, ie: how the special is
		activated.

		Value Activated when...

		0 Player crosses the line
		1 Player uses the line with the use key
		2 Monster crosses the line
		3 Projectile impacts the wall
		4 Player pushes the wall
		5 Projectile crosses the line

		To get the special activation, use the following formula:

		activation := (line.flags BITAND 0x1C00) BITSHIFTRIGHT 10

 The Hexen THING structure

 Offset Size Meaning

 * 0 word thing ID - used in scripts and specials to
			 identify a THING or a set of THINGs.
 2 word x-position on the map
 4 word y-position on the map
 * 6 word starting altitude on the map - the THING
			 is created at this altitude above the floor
			 of the sector it's in when the map is entered,
			 and is immediately subjected to gravity.
 8 word the angle the thing is facing when the map
			 is entered.
 10 word the thing type (see below)
 * 12 word thing flags (see below)
 14 byte special type (see [Specials]). a thing's
			 special is activated when the thing is
			 killed (Monster), destroyed (Tree, Urn, etc.),
			 or picked up (Artifact, Puzzle Piece.)
 15 5 bytes special arguments, 1 byte each

 Thing Flags

 The following flags are starred with an asterisk if they're new for
 Hexen:

 Bits Meaning when Set

 0 the thing appears on the Easy skill settings (1-2)
 1 the thing appears on the Normal skill setting (3)
 2 the thing appears on the Hard skill settings (4-5)
 3 the thing is deaf - it sits around until it's
		hurt, or until it sees a player.
 * 4 the thing is dormant - it never wakes up until it's
		activated using the Thing_Activate() special.
 * 5 the thing appears for the Fighter class.
 * 6 the thing appears for the Cleric class.
 * 7 the thing appears for the Mage class.
 * 8 the thing appears in single-player games.
 * 9 the thing appears in cooperative games.
 * 10 the thing appears in deathmatch games.

 Each "thing appears" flag must be set for each condition under which the
 thing is to appear. For multi-player games involving more than one
 class, a thing that is set for one of the classes involved will also appear
 for the other two classes in the game.

 For example, if you set the three pieces of the Fighter's sword to appear
 for only the Fighter (bit 5 is set) and in Deathmatch (bit 10 is set),
 if a Mage or a Cleric is also playing, the pieces of the sword will be
 visible to them, too.

 Thing Types

 Creatures as well as some objects can be activated and/or deactivated with
 the ThingActivate and ThingDeactivate line specials.

 Creatures will freeze when deactivated and resume when activated.
 Activation can also be used to bring a "dormant" creature to life.

 If a creature has a special, that special will be activated upon its death.
 Also, if the creature is teleported away using the banishment device
 (teleport other), the special will be activated and then removed from the
 creature.

 [Sorted list created by SBS, original was hard to find stuff in]

 Type Name

 1 Player_1_start
 2 Player_2_start
 3 Player_3_start
 4 Player_4_start
 5 Z_WingedStatue
 6 ZC_Rock1
 7 ZC_Rock2

 9 ZC_Rock3
 10 2C_SerpentStaff
 11 Player_Deathmatch
 12 4F_3Blade
 13 4F_2Crosspiece
 14 Player_TeleportSpot
 15 ZC_Rock4
 16 4F_1Hilt
 17 Z_Chandelier
 18 4C_3Arc
 19 4C_2Cross

 20 4C_1Shaft
 21 4M_3Skull
 22 4M_2Stub
 23 4M_1Stick
 24 ZF_TreeDead
 25 ZF_TreeDestructible
 26 ZS_Tree2
 27 ZS_Tree1
 28 ZF_StumpBurned
 29 ZF_StumpBare

 30 A_Porkelator
 31 C_Demon
 32 A_HealingComplete (Urn)
 33 A_Torch
 34 C_Wraith
 36 A_ChaosDevice
 37 ZS_Stump1
 38 ZS_Stump2
 39 ZF_ShroomLarge1

 40 ZF_ShroomLarge2
 41 ZC_ShroomLarge3
 42 ZC_ShroomSmall1

 44 ZC_ShroomSmall2
 45 ZC_ShroomSmall3
 46 ZF_ShroomSmall1
 47 ZF_ShroomSmall2
 48 ZC_Stalagmite_Pillar
 49 ZC_StalagmiteLarge

 50 ZC_StalagmiteMedium
 51 ZC_StalagmiteSmall
 52 ZC_StalactiteLarge
 53 2M_ConeOfShards
 54 Z_Wall_Torch_Lit
 55 Z_Wall_Torch_Unlit
 56 ZC_StalactiteMedium
 57 ZC_StalactiteSmall
 58 ZS_Moss1
 59 ZS_Moss2

 60 ZS_Vine
 61 ZG_CorpseKabob
 62 ZG_CorpseSleeping
 63 ZG_TombstoneRIP
 64 ZG_TombstoneShane
 65 ZG_TombstoneBigCross
 66 ZG_TombstoneBrianR
 67 ZG_TombstoneCrossCircle
 68 ZG_TombstoneSmallCross
 69 ZG_TombstoneBrianP

 71 ZG_CorpseHanging
 72 ZP_GargPortalTall
 73 ZP_GargIceTall
 74 ZP_GargPortalShort
 76 ZP_GargIceShort
 77 Z_Banner
 78 ZF_TreeLarge1
 79 ZF_TreeLarge2

 80 ZF_TreeGnarled1
 81 A_HealingWimpy (Vial)
 82 A_HealingHefty (Flask)
 83 A_WingsOfWrath
 84 A_IconOfDefender
 86 A_DarkServant
 87 ZF_TreeGnarled2
 88 ZS_Log
 89 ZI_IcicleLarge

 90 ZI_IcicleMedium
 91 ZI_IcicleSmall
 92 ZI_IcicleTiny (missing in spec)
 93 ZI_IceSpikeLarge
 94 ZI_IceSpikeMedium
 95 ZI_IceSpikeSmall
 96 ZI_IceSpikeTiny (missing in spec)
 97 ZW_RockBrownLarge
 98 ZW_RockBrownSmall
 99 ZW_RockBlack

 100 ZM_Rubble1
 101 ZM_Rubble2
 102 ZM_Rubble3
 103 Z_VasePillar
 104 ZM_Pot1
 105 ZM_Pot2
 106 ZM_Pot3
 107 C_Centaur
 108 ZG_CorpseLynched
 109 ZG_CorpseNoHeart

 110 ZG_CorpseSitting
 111 ZG_BloodPool

 113 Spawn_Leaf
 114 C_Bishop
 115 C_CentaurLeader
 116 Z_TwinedTorch
 117 Z_TwinedTorch_Unlit
 118 Z_GlitterBridge
 119 Z_Candle

 120 C_SerpentLeader
 121 C_Serpent
 122 Mana_1
 123 3F_Hammer
 124 Mana_2

 140 Z_TeleportSmoke

 254 C_Dragon (Death Wyvern)

 1400 SS_Stone
 1401 SS_Heavy
 1402 SS_Metal
 1403 SS_Creak
 1404 SS_Silent
 1405 SS_Lava
 1406 SS_Water
 1407 SS_Ice
 1408 SS_EarthCrack
 1409 SS_Metal2
 1410 SE_Wind

 3000 PO_Anchor
 3001 PO_StartSpot
 3002 PO_StartSpot_Crush

 8000 A_Repulsion
 8002 A_BootsOfSpeed
 8003 A_BoostMana
 8004 ManaCombined
 8005 Ar_Armor
 8006 Ar_Shield
 8007 Ar_Helmet
 8008 Ar_Amulet
 8009 3C_Firestorm
 8010 2F_Axe
 8020 C_IceGuy

 8030 K_SteelKey
 8031 K_CaveKey
 8032 K_AxeKey
 8033 K_FireKey
 8034 K_EmeraldKey (was CastleKey)
 8035 K_DungeonKey
 8036 K_SilverKey
 8037 K_RustyKey
 8038 K_WasteKey
 8039 K_SwampKey

 8040 3M_Lightning
 8041 A_Bracers
 8042 Z_FireBull
 8043 Z_FireBull_Unlit
 8044 ZP_GargCorrode
 8045 ZP_GargLavaDrkTall
 8046 ZP_GargLavaBrtTall
 8047 ZP_GargBrnzTall
 8048 ZP_GargStlTall
 8049 ZP_GargLavaDrkShort
 8050 ZP_GargLavaBrtShort
 8051 ZP_GargBrnzShort
 8052 ZP_GargStlShort

 8060 Z_FireSkull
 8061 Z_BrassBrazier
 8062 ZF_DestructibleTree
 8063 Z_Chandelier_Unlit
 8064 Z_ArmorSuit
 8065 Z_Bell
 8066 Z_BlueCandle
 8067 ZG_IronMaiden
 8068 ZF_Hedge
 8069 Z_Cauldron
 8070 Z_Cauldron_Unlit
 8071 Z_Chain32
 8072 Z_Chain64
 8073 Z_ChainHeart
 8074 Z_ChainLHook
 8075 Z_ChainSHook
 8076 Z_ChainSpikeBall
 8077 Z_ChainSkull

 8080 C_Demon2

 8100 Z_Barrel
 8101 ZF_Shrub1
 8102 ZF_Shrub2
 8103 Z_Bucket
 8104 ZF_ShroomBoom

 8200 k_CastelKey (was K_GoldKey)

 8500 ZM_LgStein
 8501 ZM_SmStein
 8502 ZM_CandleWeb
 8503 ZM_SmCandle
 8504 ZM_LgCandle
 8505 ZM_GobletSpill
 8506 ZM_GobletTall
 8507 ZM_GobletSmall
 8508 ZM_GobletSilver
 8509 ZM_CleaverMeat

 9001 X_MapSpot
 9002 ZZ_Skull
 9003 ZZ_BigGem
 9004 ZZ_GemRed
 9005 ZZ_GemGreen1
 9006 ZZ_GemBlue1
 9007 ZZ_Book1
 9008 ZZ_Book2
 9009 ZZ_GemGreen2
 9010 ZZ_GemBlue2
 9011 ZZ_WingedStatueNoSkull
 9012 ZZ_GemPedestal
 9013 X_MapSpotGravity
 9014 ZZ_Skull2
 9015 ZZ_FWeapon
 9016 ZZ_CWeapon
 9017 ZZ_MWeapon
 9018 ZZ_Gear
 9019 ZZ_Gear2
 9020 ZZ_Gear3
 9021 ZZ_Gear4

 10000 Spawn_Fog
 10001 Spawn_Fog_a
 10002 Spawn_Fog_b
 10003 Spawn_Fog_c

 10011 C_Wraith2
 10030 C_Ettin
 10040 A_Banishment
 10060 C_FireImp
 10080 C_Heresiarch

 10090 Spike_Down
 10091 Spike_Up

 10100 C_FighterBoss
 10101 C_ClericBoss
 10102 C_MageBoss
 10110 A_Flechette
 10120 A_HealRadius

 10200 C_Korax

 10225 Spawn_Bat

 10500 Z_SmallFlame_Timed
 10501 Z_SmallFlame_Permanent
 10502 Z_LargeFlame_Timed
 10503 Z_LargeFlame_Permanent

 5
 Hexen Script Language

============
========

 The Hexen Script Language is called the "Action Code Script", or ACS.

 Each map has an ACS file that contains the scripts specific to that map.
 The scripts within it are identified using numbers that the general special
 ACS_Execute() uses.

 A script itself can call the ACS_Execute() special, which will spawn
 (start) another script that will run concurrently (at the same time)
 with the rest of the scripts.

 A script can also be declared as OPEN, which will make it run automatically
 upon entering the map. This is used for perpetual type effects, level
 initialization, etc.

 The compiler takes the ACS file and produces and object file that is the
 last lump in the map WAD (BEHAVIOR).

 To create a compiled ACS file from a text script from DOS type:

 C:\HEXEN > ACS filename [enter]

 (See Note below)

 The output of ACS produces 'filename.o' from 'filename.acs'. The contents
 of this output file (filename.o) can be directly used as the BEHAVIOR
 lump of the map it's to be used with.

 SBS Note : DeeP and other editors directly integrate seamless support for
	 the ACS compiler without having to exit to DOS. The new
	 behavior Lump can be directly saved with no additional steps
	 required. There are 2 examples of scripts. One is SCRIPTS.ACS
	 and the other is HEXENTUT.ACS, with corresponding PWAD files.

	 In DeeP, select "Compile Script" from the F6 HEXEN development
	 menu.

 Script Shared Structure

 Map scripts should start with #include "common.acs", which is just...

 #include "specials.acs"
 #include "defs.acs"
 #include "wvars.acs"

 The file "specials.acs" defines all the general specials. These are used
 within scripts just like function calls. The file "defs.acs" defines a
 bunch of constants that are used by the scripts. The file "wvars.acs"
 defines all the world variables. It needs to be included by all maps so
 they use consistent indexing.

 Variables and their Scope

 There is only one data type ACS, a 4 byte integer. Use the keyword int to
 declare an integer variable. You may also use the keyword str, it is
 synonymous with int. It's used to indicate that you'll be using the
 variable as a string. The compiler doesn't use string pointers, it uses
 string handles, which are just integers.

 Declaring a variable

 There are two "types" of variables: 1. "str"
				 2. "int":

	examples:

	str mystring;
	int myint;

	or:

	str texture, sound;
	int i, tid;

 * Note: You can't assign a variable in its declaration; you must give it a
 value in a different expression.

 The SCOPE of a variable is one of the following:

 1. World-scope
 2. Map-scope,
 3. Script-scope.

 1. World-scope

 World-scope variables are global, and can be accessed in any map.
 Hexen maintains [n] permanent globals, numbered 0-[n-1]. You must
 assign one of the globals a name in order to access it, like this:

	world int 5:Grunt;

 This tells Hexen to reference world global number 5 whenever it
 encounters the name "Grunt".

 2. Map-scope

 Map-scope variables are local to the current map. They must be
 declared outside of any script code, but without the world keyword.
 These variables can't be accessed in any other map.

 Script-scope variables are local to the current script - they
 can't be accessed by any other script or map.

 Here's some code that shows the declaration of all three scopes:

 world int 3:DungeonAccess; // World-scope

 int mapTimer; // Map-scope

 script 4 (void)
 {
	 int x, y; // Script-scope
	 ...
 }

 Language Structure

 Here is a quick reference manual type definition of the language. It
 ends with a description of all the internal functions.

 Keywords

 The following identifiers are reserved for use as keywords, and may
 not be used otherwise:

 break
 case
 const
 continue
 default
 define
 do

 else
 goto
 if
 include
 int

 open
 print
 printbold
 restart

 script
 special
 str
 suspend
 switch

 terminate
 until
 void
 while
 world

 Comments

 Comments are ignored by the script compiler. There are two forms:

 1. /*...you comment... */
 All information between the first /* and last */ is ignored.
 The leading /* and trailing */ are required.
 2. //
 All information past the // is ignored

 examples:

 /*
 This is a comment.
 */

 int a; // And this is a comment

 World-variable definitions

 world int <constant-expression> : <identifier> ;

 world int <constant-expression> : <identifier> , ... ;

 Map-variable definitions

 Declares a variable local to the current map.

 int <identifier> ;
 str <identifier> ;
 int <identifier> , ... ;

 Include Directive

 Includes the source of the specified file and compiles it. This acts the
 same as if you have "included" the source in the file it resides in. Use
 this to make a common reference set of code you use often.

 #include <string-literal>

 The supplied required includes shown earlier are an illustration:

 #include "specials.acs"
 #include "defs.acs"
 #include "wvars.acs"

 Define Directive

 Replaces an identifier with a constant expression.

 #define <identifier> <constant-expression>

 Whenever "identifier" is used in the source, the "constant-expression"
 is substituted. This is similar to a macro or keyboard short-cut.

 Constant Expressions

 <integer-constant>:

 decimal 200
 hexadecimal 0x00a0, 0x00A0
 fixed point 32.0, 0.5, 103.329

 any radix <radix>_digits :

 binary 2_01001010
 octal 8_072310
 decimal 10_50025
 hexadecimal 16_00a03f2

 String Literals

 <string-literal>: "string"

 Example : "Hello there"

 Script Definitions

 To define a script:

 <script-definition>:
 script <constant-expression> (<arglist>) { <statement> }
 script <constant-expression> OPEN { <statement> }

 For example:

 script 10 (void) { ... }

 script 5 OPEN { ... }

 * Note that OPEN scripts do not take arguments.

 Statements

 <statement>:

 <declaration-statement>
 <assignment-statement>
 <compound-statement>
 <switch-statement>
 <jump-statement>
 <selection-statement>
 <iteration-statement>
 <function-statement>
 <linespecial-statement>
 <print-statement>
 <control-statement>

 Declaration Statements

 Declaration statements create script variables.

 <declaration-statement>:
 int <variable> ;
 int <variable> , <variable> , ... ;

 Assignment Statements

 Assigns an expression to a variable.

 <assignment-statement>:
 <variable> <assignment-operator> <expression> ;

 <assignment-operator>:
 =
 +=
 -=
 *=
 /=
 %=

 * Note: An assignment of the form V <op>= E is equivalent to V = V <op> E.
 For example:

 A += 5; is the same as
 A = A + 5;

 Compound Statements

 <compound-statement>:
 { <statement-list> }

 <statement-list>:
 <statement> <statement> <...>

 Switch Statements

 A switch statement evaluates an integral expression and passes control
 to the code following the matched case.

 <switch-statement>:

 switch (<expression>) { <labeled-statement-list> }

 <labeled-statement>:

 case <constant-expression> : <statement>
 default : <statement>

 Example:

 switch (a)
 {
 case 1: // when a == 1
	b = 1; // .. this is executed,
	break; // and this breaks out of the switch().
 case 2: // when a == 2
	b = 8; // .. this is executed,
		 // but there is no break, so it continues to the next
		 // case, even though a != 3.
 case 3: // when a == 3
	b = 666; // .. this is executed,
	break; // and this breaks out of the switch().
 default: // when none of the other cases match,
	b = 777; // .. this is executed.
 }

 Note for C users:

	While C only allows integral expressions in a switch
	statement, ACS allows full expressions such as "a + 10".

 Jump Statements

 A jump statement passes control to another portion of the script.

 <jump-statement>:

 continue ;
 break ;
 restart ;

 Iteration Statements

 <iteration-statement>:

 while (<expression>) <statement>
 until (<expression>) <statement>
 do <statement> while (<expression>) ;
 do <statement> until (<expression>) ;
 for (<assignment-statement> ; <expression> ; <assignment-statement>)
	 <statement>

 The continue, break and restart keywords can be used in an iteration
 statement:

 - the continue keyword jumps to the end of the last <statement> in the
 iteration-statement. The loop continues.

 - the break keyword jumps right out of the iteration-statement.

 Function Statements

 A function statement calls a Hexen internal-function, or a Hexen
 linespecial-function.

 <function-statement>:

 <internal-function> | <linespecial-statement>

 <internal-function>:

 <identifier> (<expression> , ...) ;
 <identifier> (const : <constant-expression> , ...) ;

 <linespecial-statement>:

 <linespecial> (<expression> , ...) ;
 <linespecial> (const : <constant-expression> , ...) ;

 Print Statements

 <print-statement>:

 print (<print-type> : <expression> , ...) ;
 printbold (<print-type> : <expression> , ...) ;

 <print-type>:

 s string
 d decimal
 c constant

 Note : Some combinations of text cause playing errors. The text appear
	 to be hard coded in the .EXE. If you have a strange error and
	 have a "print" statement, remove the statement and see if the error
	 still occurs. If it now works, change your text.
	

 Selection Statements

 <selection-statement>:

 if (<expression>) <statement>
 if (<expression>) <statement> else <statement>

 Control Statements

 <control-statement>:

 suspend ; // suspends the script
 terminate ; // terminates the script

 Internal Functions

 void tagwait(int tag);

 The current script is suspended until all sectors marked with
 <tag> are inactive.

 void polywait(int po);

 The current script is suspended until the polyobj marked with
 <po> is incactive.

 void scriptwait(int script);

 The current script is suspended until the script specified by
 <script> has terminated.

 void delay(int ticks);

 The current script is suspended for a time specified by <ticks>.
 A tick represents one cycle from a 35Hz timer.

 void changefloor(int tag, str flatname);
 --

 The floor flat for all sectors marked with <tag> is changed to
 <flatname>.

 void changeceiling(int tag, str flatname);
 --

 The ceiling flat for all sectors marked with <tag> is changed to
 <flatname>.

 int random(int low, int high);

 Returns a random number between <low> and <high>, inclusive. The
 values for <low> and <high> range from 0 to 255.

 int lineside(void);

 Returns the side of the line the script was activated from. Use
 the macros LINE_FRONT and LINE_BACK, defined in "defs.acs".

 void clearlinespecial(void);

 The special of the line that activated the script is cleared.

 int playercount(void);

 Returns the number of active players.

 int gametype(void);

 Returns the type of game being played:

 GAME_SINGLE_PLAYER
 GAME_NET_COOPERATIVE
 GAME_NET_DEATHMATCH

 int gameskill(void);

 Returns the skill of the game being played:

 SKILL_VERY_EASY
 SKILL_EASY
 SKILL_NORMAL
 SKILL_HARD
 SKILL_VERY_HARD

 Example:

 int a;
 a = gameskill();

 switch(gameskill())
 {
 case SKILL_VERY_EASY:
 ...
 case SKILL_VERY_HARD:
 ...
 }

 int timer(void);

 Returns the current leveltime in ticks.

 void sectorsound(str name, int volume);

 Plays a sound in the sector the line is facing. <volume> has the
 range 0 to 127.

 void thingsound(int tid, str name, int volume);

 Plays a sound at all things marked with <tid>. <volume> has the
 range 0 to 127. See section 15 for values.

 void ambientsound(str name, int volume);
 --

 Plays a sound that all players hear at the same volume. <volume> has
 the range 0 to 127. See section 15 for values.

 void soundsequence(str name);

 Plays a sound sequence in the sector the line is facing.

 int thingcount(int type, int tid);

 Returns a count of things in the world. Use the thing type definitions
 in defs.acs for <type>. Both <type> and <tid> can be 0 to force the
 counting to ignore that information.

 Examples:

 // Count all ettins that are marked with TID 28:

 c = thingcount(T_ETTIN, 28);

 // Count all ettins, no matter what their TID is:

 c = thingcount(T_ETTIN, 0);

 // Count all things with TID 28, no matter what their type is:

 c = thingcount(0, 28);

 void setlinetexture(int line, int side, int position, str texturename);

 Sets a texture on all lines identified by <line>. A line is identified by
 giving it the special Line_SetIdentification in a map editor.

 <side>:

 SIDE_FRONT
 SIDE_BACK

 <position>:

 TEXTURE_TOP
 TEXTURE_MIDDLE
 TEXTURE_BOTTOM

 Examples:

 setlinetexture(14, SIDE_FRONT, TEXTURE_MIDDLE, "ice01");
 setlinetexture(3, SIDE_BACK, TEXTURE_TOP, "forest03");

 void setlineblocking(int line, int blocking);

 Sets the blocking (impassable) flag on all lines identified by <line>.

 <blocking>:

 ON
 OFF

 Example:

 setlineblocking(22, OFF);

 void setlinespecial(int line, int special, int arg1, int arg2,
		 int arg3, int arg4, int arg5);

 Sets the line special and args on all lines identified by <line>.

 6

 Flats with special properties

================
=======

	Lava Lava does damage
	Water Makes things sink
	Sludge Makes things sink
	Ice Changes friction

 7
The MAPINFO lump

==================

 This is a lump in the .WAD that gives attributes to each map. This entry
 does not go with each map - there is only one MAPINFO lump in the entire
 IWAD. If you include a MAPINFO lump in a PWAD, make sure it's got
 information for all the possible maps the player will be entering.

 map: Number and name of map [1..60]
 warptrans: Actual map number in case maps are not sequential [1..60]
 next: Map to teleport to upon exit of timed deathmatch [1..60]
 cdtrack: CD track to play during level
 cluster: Defines what cluster level belongs to
 sky1: Default sky texture; followed by speed
 sky2: Alternate sky displayed in Sky2 sectors ; followed by speed
 doublesky: parallax sky: sky2 behind sky1
 lightning: Keyword indicating use of lightning on the level
		flashes from sky1 to sky2 (see also: IndoorLightning special)
 fadetable: Lump Name of fade table {fogmap}

 Example MapInfo entry:

		map 1 "Winnowing Hall"
		warptrans 1
		next 2
		cluster 1
		sky1 SKY2 2 ; 2 is the sky scroll speed
		sky2 SKY3 0 ; 0 means don't scroll sky
		lightning
		doublesky
		cdtrack 13

 Note on "next" integer (for timed deathmatches):

 In normal gameplay, there is no linear fashion in which the game
 progresses from one level to another; you just go through a teleport
 somewhere on a level, and it takes you to somewhere on another
 level.

 For -timer deathmatch, the game needs to know what level to
 proceed to because it isn't always just the next higher level.

 A note about the WARPTRANS keyword: Maps are edited and named
 MAPxx, where xx is a number from 01 to 63. This is the number that
 is used from within scripts when a map is referred to, and by the
 MAP keyword in the MAPINFO lump.

 However, the -warp option and the warping cheat use a different set
 of numbers. This different set of numbers is set by the WARPTRANS keyword.
 By default, the WARPTRANS value is set to the same number as the map.

 Our designers starting making maps with numbers that had big gaps between
 them, and then made the scripts refer to these numbers, so we needed a
 way to pack all the map numbers into a continuous stream for the -warp
 option. Also, the accepted range for a WARPTRANS value is 1-31. Makes it
 easy when using DM.

 Note on "cluster" integer:

 The game maps are divided into clusters. When you enter a new cluster,
 you can never again visit any of the levels from the previous cluster.
 This makes it so each individual save game only needs to backup map
 archives for about 6-7 maps, and provides for a milestone marker of
 sorts for game play, like an episode .

 A Hexen backdrop and some text are given at the end of each cluster.
 If you don't enter a cluster, it defaults to 0. The commercial IWAD
 separates its 31 maps into 5 clusters.

 8
 PolyObjects

===========

 Polyobjs are one-sided lines that are built somewhere else on the map, and
 then later translated to the desired start spot on the map at level load.

 In building polyobjs, two different line specials can be used to determine
 the line drawing order:

	Polyobj_ExplicitLine(polyNumber, orderNumber, polyMirror, sound);

	Polyobj_StartLine (polyNumber, polyMirror, sound);

 Each polyobj should have a unique polyNumber, which is used in poly line
 specials to refer to a particular polyobj.

 polyMirror refers to a second polyobj that will "mirror" all actions of the
 first polyobj. For instance, if a polyobj is rotated to the right by 90
 degrees, then that polyobj's mirror will rotate left 90 degrees.

 Note that having two polyobjs mirror each other is not considered to be a
 good thing, but in general won't cause problems because a poly can only
 do one particular action at a time.

 Meaning: if that poly that rotated left by 90 degrees then mirrored the
 right-turning polyobj, the right-turning poly would ignore any attempt
 to rotate it again, as it would already be being acted upon.

 The last parameter to these specials refers to a particular sound type
 that should play when the poly is moved/rotated. See the section on
 attaching sounds to a moving sector for more info.

 Polyobj_StartLine():

 A very basic special. Place it on a particular polyobj line, and that line
 will be the first line rendered on the polyobj.

 The rendering order for all other lines are determined by iterating through
 to the next line that has a first point identical to the start line's second
 point. The third line rendered will be the next line that has a first point
 identical to the second line's second point, and so on and so forth.

 This method works well for polyobjs that are convex, and has the advantage
 of leaving all but one line free for other line specials.

 Polyobj_ExplicitLine:

 This special requires a bit more work to use. Each line in the polyobj
 defined using this special must use this line special. Then, a value from
 1-255 should be placed in orderNumber.

 This defines the rendering order for the lines, with a 1 being the first
 line rendered, and so on. Useful for non-convex polyobjs, but has the
 disadvantage of utilizing all line specials on the poly.

 Polyobj Start Spots and Anchor Points

 Each polyobj must have an anchor point, and a startSpot. The anchor is a
 thing placed near the polyobj when it's created that defines the origin of
 the polyobj, or the point in which it will rotate about. The anchor (and
 all polyobj lines) are directly translated to the polyobj startSpot.

 Bottom line: The anchor point is the point near the polyobj, and the
 startSpot is the point on the actual map that defines the location of the
 poly.

 There are two different types of startSpots: crushing and non-crushing.
 Pretty obvious what the difference is:)

 If the poly strikes an object, it'll first attempt to move it. If that
 fails, it will either try to damage the object, or just stop moving
 depending upon the type of startSpot.

 Please note that the ANGLE field of the startSpot and anchor points should
 be equal to the polyNumber that was previously defined for that particular
 polyobj. The polyobj stuff was done before any of the TID/thing special
 code was implemented, so Raven did this temporary hack, which turned
 permanent, as the designers had already done a ton of polyobjs, and didn't
 want to have to go back and replace them.

 9
 List of Spawnable Objects

===================
==

 Use these identifiers for the Thing_Spawn() and Thing_SpawnNoFog()
 specials:

	T_NONE
	T_CENTAUR
	T_CENTAURLEADER
	T_DEMON
	T_ETTIN
	T_FIREGARGOYLE
	T_WATERLURKER
	T_WATERLURKERLEADER
	T_WRAITH
	T_WRAITHBURIED

	T_FIREBALL1
	T_MANA1
	T_MANA2
	T_ITEMBOOTS
	T_ITEMEGG
	T_ITEMFLIGHT
	T_ITEMSUMMON
	T_ITEMTPORTOTHER
	T_ITEMTELEPORT
	T_BISHOP
	T_ICEGOLEM
	T_BRIDGE
	T_DRAGONSKINBRACERS

	T_ITEMHEALTHPOTION
	T_ITEMHEALTHFLASK
	T_ITEMHEALTHFULL
	T_ITEMBOOSTMANA
	T_FIGHTERAXE
	T_FIGHTERHAMMER
	T_FIGHTERSWORD1
	T_FIGHTERSWORD2
	T_FIGHTERSWORD3
	T_CLERICSTAFF
	T_CLERICHOLY1
	T_CLERICHOLY2
	T_CLERICHOLY3
	T_MAGESHARDS
	T_MAGESTAFF1
	T_MAGESTAFF2
	T_MAGESTAFF3
	T_MORPHBLAST

	T_ROCK1
	T_ROCK2
	T_ROCK3
	T_DIRT1
	T_DIRT2
	T_DIRT3
	T_DIRT4
	T_DIRT5
	T_DIRT6

	T_ARROW
	T_DART
	T_POISONDART
	T_RIPPERBALL
	T_STAINEDGLASS1
	T_STAINEDGLASS2
	T_STAINEDGLASS3
	T_STAINEDGLASS4
	T_STAINEDGLASS5
	T_STAINEDGLASS6
	T_STAINEDGLASS7
	T_STAINEDGLASS8
	T_STAINEDGLASS9
	T_STAINEDGLASS0
	T_BLADE
	T_ICESHARD
	T_FLAME_SMALL
	T_FLAME_LARGE

	T_MESHARMOR
	T_FALCONSHIELD
	T_PLATINUMHELM
	T_AMULETOFWARDING
	T_ITEMFLECHETTE
	T_ITEMTORCH
	T_ITEMREPULSION
	T_MANA3
	T_PUZZSKULL
	T_PUZZGEMBIG
	T_PUZZGEMRED
	T_PUZZGEMGREEN1
	T_PUZZGEMGREEN2
	T_PUZZGEMBLUE1
	T_PUZZGEMBLUE2
	T_PUZZBOOK1
	T_PUZZBOOK2

	T_METALKEY
	T_SMALLMETALKEY
	T_AXEKEY
	T_FIREKEY
	T_GREENKEY
	T_MACEKEY
	T_SILVERKEY
	T_RUSTYKEY
	T_HORNKEY
	T_SERPENTKEY

	T_WATERDRIP
	T_TEMPSMALLFLAME
	T_PERMSMALLFLAME
	T_TEMPLARGEFLAME
	T_PERMLARGEFLAME
	T_DEMON_MASH
	T_DEMON2_MASH
	T_ETTIN_MASH
	T_CENTAUR_MASH
	T_THRUSTSPIKEUP
	T_THRUSTSPIKEDOWN
	T_FLESH_DRIP1
	T_FLESH_DRIP2
	T_SPARK_DRIP

 10

 List of Activateable/Deactivateable Objects

=========================
=========

 Activatable:

	MT_ZTWINEDTORCH Lights torch
	MT_ZTWINEDTORCH_UNLIT Lights torch
	MT_ZWALLTORCH Lights torch
	MT_ZWALLTORCH_UNLIT Lights torch
	MT_ZGEMPEDESTAL Makes gem appear
	MT_ZWINGEDSTATUENOSKULL Makes skull appear in hands
	MT_THRUSTFLOOR_UP Raises thrust spike (if lowered)
	MT_THRUSTFLOOR_DOWN Raises thrust spike
	MT_ZFIREBULL Lights flames
	MT_ZFIREBULL_UNLIT Lights flames
	MT_ZBELL Rings bell
	MT_ZCAULDRON Lights flames
	MT_ZCAULDRON_UNLIT Lights flames
	MT_FLAME_SMALL Ignites flame
	MT_FLAME_LARGE Ignites flame
	MT_BAT_SPAWNER Start bat spawning

	Deactivatable:
	MT_ZTWINEDTORCH Extinguish torch
	MT_ZTWINEDTORCH_UNLIT Extinguish torch
	MT_ZWALLTORCH Extinguish torch
	MT_ZWALLTORCH_UNLIT Extinguish torch
	MT_THRUSTFLOOR_UP Lower thrust spike
	MT_THRUSTFLOOR_DOWN Lower thrust spike
	MT_ZFIREBULL Extinguish torch
	MT_ZFIREBULL_UNLIT Extinguish torch
	MT_ZCAULDRON Extinguish torch
	MT_ZCAULDRON_UNLIT Extinguish torch
	MT_FLAME_SMALL Extinguish torch
	MT_FLAME_LARGE Extinguish torch
	MT_BAT_SPAWNER Stop bat spawning

11

 List of THINGS that require arguments

=======================
========

 These THINGS ignore their special types, and use the arg0..arg5 fields
 for their own purposes:

		Type: 10225 Bat Spawner
		 arg0: frequency of spawn (1=fastest, 10=slowest)
		 arg1: spread angle (0..255)
		 arg2: unused
		 arg3: duration of bats (in octics)
		 arg4: turn amount per move (in degrees [0..255])

		Type: 10000 Fog Spawner
		 arg0: movement speed [0..10] (10 == fastest)
		 arg1: spread angle [0..128] (128 == 180 degrees)
		 arg2: Frequency of spawn [1..10] (1 == fastest)
		 arg3: Fog Lifetime [0..255] (5 == 1 second)
		 arg4: unused

		Type: 10001 Fog Patch Small
		 arg0: movement speed [0..10] (10 == fastest)
		 arg1: unused
		 arg2: unused
		 arg3: Fog Lifetime [0..255] (5 == 1 second)
		 arg4: Boolean: (0 == not moving)

		Type: 10002 Fog Patch Medium
		 arg0: movement speed [0..10] (10 == fastest)
		 arg1: unused
		 arg2: unused
		 arg3: Fog Lifetime [0..255] (5 == 1 second)
		 arg4: Boolean: (0 == not moving)

		Type: 10003 Fog Patch Large
		 arg0: movement speed [0..10] (10 == fastest)
		 arg1: unused
		 arg2: unused
		 arg3: Fog Lifetime [0..255] (5 == 1 second)
		 arg4: Boolean: (0 == not moving)

		Type: 254 Death Wyvern
		 arg0: TID of possible destination (required)
		 arg1: TID of possible destination (optional)
		 arg2: TID of possible destination (optional)
		 arg3: TID of possible destination (optional)
		 arg4: TID of possible destination (optional)

	 The Death Wyvern requires mapspots placed around the map with
	 its args containing TIDs of possible destinations, making up to 5
	 destinations possible from each position. The choice of next
	 destination is random. Note that the dragon lich's first
	 destination is the first thing that it can locate that has a TID
	 identical to it's own.

	 Type: 10200 Korax
		 TIDs:
		 245 Korax's mapthing
		 249 Teleport destination (MapSpots)
	 Scripts:
		 249 Run when korax health falls below half
		 250-254 Randomly run by korax as commands
		 255 Run upon death of korax

12
.

 Sector Specials

===============

 The following numbers are used in the sector.type field (type of
 sector):

	1 Light_Phased
	2 LightSequenceStart
	3 LightSequenceSpecial1
	4 LightSequenceSpecial2

	These specials deal with phased lightning ("moving lights"). Two
	different ways to go about doing phased lighting: automatic, or
	by-hand.
	
	The automatic method is (obviously) more convenient, but
	the by-hand method is more flexible. Light_Phased is the by-hand
	special. Place it on a sector, then set the sector's lightlevel to a
	phase index (0-63). As you place the special on nearby sectors,
	increment the index for each sector.

	Or, to use the LightSequence specials, just place the LightSequence
	special on a sector. Then, for each additional sector, alternate
	between LightSequenceSpecial1 & LightSequenceSpecial2.

	For instance, if you wanted phased lightning to flow up a staircase,
	you could either place Light_Phased on each step, and change the
	phase index (lightlevel) accordingly. Or, you could place
	LightSequenceStart on the bottom step (and set that step's lightlevel
	to something mid-ranged: 80-128 are pretty nice values), and then
	let the game calculate the phase indices for each step by placing the
	LightSequenceSpecial specials on all other steps.
	
	Note that for the LightSequenceSpecial specials to have proper
	lighting, set their lightlevels to zero, which causes it to use
	the previous sector's lightlevel. Hence, that "nice value" which
	was placed on the first step will iterate through all the other
	steps. If a step's lightlevel is not zero, then that value will
	filter down to all other steps after it.

	26 Stairs_Special1
	27 Stairs_Special2

	Used by action specials that build stairs.

	199 Light_IndoorLightning1

	Dimmer effect during lightning flash. Used for indoor areas, which
	are normally not affected by lightning.

	198 Light_IndoorLightning2

	 Same as 1, but brighter.

	200 Sky2
	Use the alternate sky specified in the mapinfo lump.

	201 Scroll_North_Slow
	202 Scroll_North_Medium
	203 Scroll_North_Fast
	204 Scroll_East_Slow
	205 Scroll_East_Medium
	206 Scroll_East_Fast
	207 Scroll_South_Slow
	208 Scroll_South_Medium
	209 Scroll_South_Fast
	210 Scroll_West_Slow
	211 Scroll_West_Medium
	212 Scroll_West_Fast
	213 Scroll_NorthWest_Slow
	214 Scroll_NorthWest_Medium
	215 Scroll_NorthWest_Fast
	216 Scroll_NorthEast_Slow
	217 Scroll_NorthEast_Medium
	218 Scroll_NorthEast_Fast
	219 Scroll_SouthEast_Slow
	220 Scroll_SouthEast_Medium
	221 Scroll_SouthEast_Fast
	222 Scroll_SouthWest_Slow
	223 Scroll_SouthWest_Medium
	224 Scroll_SouthWest_Fast

	These all scroll floor flats in their respective directions. They
	also move any objects in that direction.

13
.
 Action Specials

===============

 These are the specials found in the THING.special and LINEDEF.special
 fields.

 Floor and Ceiling Specials

 20:Floor_LowerByValue / tag / speed / height / arg4 / arg5

		tag: tag of affected sector
		speed: speed of move [0..255]
		height: relative height of move in pixels

	 Moves the floor of all sectors identified by 'tag'.

 21:Floor_LowerToLowest / tag / speed / arg3 / arg4 / arg5

		tag: tag of affected sector
		speed: speed of move [0..255]

	 Lowers floor to lowest adjacent sectors' floor.

 22:Floor_LowerToNearest / tag / speed / arg3 / arg4 / arg5

		tag: tag of affected sector
		speed: speed of move [0..255]

	 Lowers floor to next lower adjacent sector's floor.

 23:Floor_RaiseByValue / tag / speed / height / arg4 / arg5

		tag: tag of affected sector
		speed: speed of move [0..255]
		height: relative height of move in pixels

	 Moves the floor of all sectors identified by 'tag'.

 24:Floor_RaiseToHighest / tag / speed / arg3 / arg4 / arg5

		tag: tag of affected sector
		speed: speed of move [0..255]

	 Raises floor to highest adjacent sectors' floor.

 25:Floor_RaiseToNearest / tag / speed / arg3 / arg4 / arg5

		tag: tag of affected sector
		speed: speed of move [0..255]

	 Raises floor to next higher adjacent sector's floor.

 28:Floor_RaiseAndCrush / tag / speed / crush / arg4 / arg5

		tag: tag of affected sector
		speed: speed of move [0..255]
		crush: damage done by crush

	 Raises floor to ceiling and does crushing damage.

 35:Floor_RaiseByValueTimes8 / tag / speed / height / arg4 / arg5

		tag: tag of affected sector
		speed: speed of move [0..255]
		height: relative height of move in 8 pixel units

	 Raises the floor in increments of 8 units.

 36:Floor_LowerByValueTimes8 / tag / speed / height / arg4 / arg5

		tag: tag of affected sector
		speed: speed of move [0..255]
		height: relative height of move in 8 pixel units

	 Lowers the floor in increments of 8 units.

 46:Floor_CrushStop / tag / arg2 / arg3 / arg4 / arg5

		tag: tag of affected sector

	 Turns off a crushing floor.

 66:Floor_LowerInstant / tag / arg2 / height / arg4 / arg5

		tag: tag of affected sector
		height: relative height in units of 8 pixels

	 Moves the floor down instantly by a specified amount.

 67:Floor_RaiseInstant / tag / arg2 / height / arg4 / arg5

		tag: tag of affected sector
		height: relative height in units of 8 pixels

	 Moves the floor up instantly by a specified amount.

 68:Floor_MoveToValueTimes8 / tag / speed / height / negative / arg5

		tag: tag of affected sector
		speed: speed of move
		height: absolute value in 8 pixel units of destination height
		negative: boolean (true if height is negative)

	 Move floor to an absolute height.

 40:Ceiling_LowerByValue / tag / speed / height / arg4 / arg5

		tag: tag of affected sector
		speed: speed of move
		height: relative height of move in pixels

	 Relative ceiling move.

 41:Ceiling_RaiseByValue / tag / speed / height / arg4 /arg5

		tag: tag of affected sector
		speed: speed of move
		height: relative height of move in pixels

	 Relative ceiling move.

 42:Ceiling_CrushAndRaise / tag / speed / crush / arg4 / arg5

		tag: tag of affected sector
		speed: speed of move
		crush: damage of crush

	 Lowers ceiling to crush and raises (continual until stopped)

 43:Ceiling_LowerAndCrush / tag / speed / crush / arg4 / arg5

		tag: tag of affected sector
		speed: speed of move
		crush: damage of crush

	 Lowers ceiling to floor and stops.

 44:Ceiling_CrushStop / tag / arg2 / arg3 / arg4 / arg5

		tag: tag of affected sector

	 Stop a crushing ceiling.

 45:Ceiling_CrushRaiseAndStay / tag / speed / crush / arg4 / arg5

		tag: tag of affected sector
		speed: speed of move
		crush: damage of crush

	 Lowers ceiling to crush, raises and stays.

 69:Ceiling_MoveToValueTimes8 / tag / speed / height / negative / arg5

		tag: tag of affected sector
		speed: speed of move
		height: absolute value in 8 pixel units of destination height
		negative: boolean (true if height is negative)

	 Moves ceiling to absolute height.

 95:FloorAndCeiling_LowerByValue / tag / speed / height / arg4 / arg5

		tag: tag of affected sector
		speed: speed of move
		height: absolute value in 8 pixel units of destination height

	 Relative move of both floor and ceiling.

 96:FloorAndCeiling_RaiseByValue / tag / speed / height / arg4 / arg5

		tag: tag of affected sector
		speed: speed of move
		height: absolute value in 8 pixel units of destination height

	 Relative move of both floor and ceiling.

 60:Plat_PerpetualRaise / tag / speed / delay / arg4 / arg5

		tag: tag of affected sector
		speed: speed of move
		delay: delay before reversing direction

	 Continually raises and lowers platform.

 61:Plat_Stop / tag / arg2 / arg3 / arg4 / arg5

		tag: tag of affected sector

	 Stops a PerpectualRaise platform.

 62:Plat_DownWaitUpStay / tag / speed / delay / arg4 / arg5

		tag: tag of affected sector
		speed: speed of move
		delay: delay before reversing direction

	 One cycle of lowering and raising.

 63:Plat_DownByValue / tag / speed / delay / height / arg5

		tag: tag of affected sector
		speed: speed of move
		delay: delay before reversing direction
		height: relative height in 8 pixel units

	 Relative platform move.

 64:Plat_UpWaitDownStay / tag / speed / delay / arg4 / arg5

		tag: tag of affected sector
		speed: speed of move
		delay: delay before reversing direction

	 One cycle of raising and lowering.

 65:Plat_UpByValue / tag / speed / delay / height / arg5

		tag: tag of affected sector
		speed: speed of move
		delay: delay before reversing direction
		height: relative height

	 Relative platform move.

 29:Pillar_Build / tag / speed / height / arg4 / arg5

		tag: tag of affected sector
		speed: speed of build
		height: height (relative to floor) where

	 Makes the floor meet the ceiling.

 30:Pillar_Open / tag / speed / f_height / c_height / arg5

		tag: tag of affected sector
		speed: speed of build
		f_height: relative height to move floor down
		c_height: relative height to move ceiling up

	 Makes the floor and the ceiling meet by moving both.

 94:Pillar_BuildAndCrush / tag / speed / height / crush / arg5

		tag: tag of affected sector
		speed: speed of build
		height: height (relative to floor) where floor meets ceiling
		crush: damage from crushing

 Stair Specials

 These stair building specials find the sector with 'tag' and
 build stairs by traversing adjacent sector marked with the
 StairSpecial1 and StairSpecial2. These specials must alternate
 between the two and must not branch.

 26:Stairs_BuildDown / tag / speed / height / delay / reset

		tag: tag of sector to start in
		speed: speed of build [0.255]
		height: height of step in pixels
		delay: delay between steps in tics
		reset: delay before stairs to reset (0==no reset)

 27:Stairs_BuildUp / tag / speed / height / delay / reset

		tag: tag of sector to start in
		speed: speed of build [0.255]
		height: height of step in pixels
		delay: delay between steps in tics
		reset: delay before stairs to reset (0==no reset)

 31:Stairs_BuildDownSync / tag / speed / height / reset / arg5

		tag: tag of sector to start in
		speed: speed of build [0.255]
		height: height of step in pixels
		reset: delay before stairs to reset (0==no reset)

 32:Stairs_BuildUpSync / tag / speed / height / reset / arg5

		tag: tag of sector to start in
		speed: speed of build [0.255]
		height: height of step in pixels
		reset: delay before stairs to reset (0==no reset)

 Door Specials

 10:Door_Close / tag / speed / arg3 / arg4 / arg5

		tag: tag of affected sector or zero if line is part of door
		speed: speed of move

	 Closes a door sector.

 11:Door_Open / tag / speed / arg3 / arg4 / arg5

		tag: tag of affected sector or zero if line is part of door
		speed: speed of move

	 Opens a door sector.

 12:Door_Raise / tag / speed / delay / arg4 / arg5

		tag: tag of affected sector or zero if line is part of door
		speed: speed of move
		delay: delay before door lowers

 13:Door_LockedRaise / tag / speed / delay / lock / arg5

		tag: tag of affected sector or zero if line is part of door
		speed: speed of move
		delay: delay before door lowers
		lock: key number that will unlock door (see key numbers)

	 Raises a door if correct key is in inventory of triggering player.

 Script Specials

 80:ACS_Execute / script / map / s_arg1 / s_arg2 / s_arg3

		script: script number to execute
		map: map which contains the script

 81:ACS_Suspend / script / map / arg3 / arg4 / arg5

		script: script number to suspend
		map: map which contains the script

 82:ACS_Terminate / script / map / arg3 / arg4 / arg5

		script: script number to suspend
		map: map which contains the script

 83:ACS_LockedExecute / script / map / s_arg1 / s_arg2 / lock

		script: script number to suspend
		map: map which contains the script
		lock: key number needed to run script (see key numbers)

 Light Specials

 110:Light_RaiseByValue / tag / value / arg3 / arg4 / arg5

		tag: tag of affected sector
		value: relative value of light level change

 111:Light_LowerByValue / tag / value / arg3 / arg4 / arg5

		tag: tag of affected sector
		value: relative value of light level change

 112:Light_ChangeToValue / tag / value / arg3 / arg4 / arg5

		tag: tag of affected sector
		value: absolute value of light level change

 113:Light_Fade / tag / value / tics / arg4 / arg5

		tag: tag of affected sector
		value: absolute value of light level change
		tics: number of tics to fade to light level

 114:Light_Glow / tag / upper / lower / tics / arg5

		tag: tag of affected sector
		upper: brightest light level
		lower: lowest light level
		tics: number of tics between light changes

 115:Light_Flicker / tag / upper / lower / arg4 / arg5

		tag: tag of affected sector
		upper: brightest light level
		lower: lowest light level

 116:Light_Strobe / tag / upper / lower / u-tics / l-tics

		tag: tag of affected sector
		upper: brightest light level
		lower: lowest light level
		u-tics: tics to stay at upper light level
		l-tics: tics to stay at lower light level

 Miscellaneous Specials

 121:Line_SetIdentification / line / arg2 / arg3 / arg4 / arg5

		line: unique id of this line

	 The script functions setlineblocking, setlinespecial, and
	 setlinetexture use the ID specified here to identify lines.

 100:Scroll_Texture_Left / speed / arg2 / arg3 / arg4 / arg5

 101:Scroll_Texture_Right / speed / arg2 / arg3 / arg4 / arg5

 102:Scroll_Texture_Up / speed / arg2 / arg3 / arg4 / arg5

 103:Scroll_Texture_Down / speed / arg2 / arg3 / arg4 / arg5

		speed: speed of scroll in pixels

 129:UsePuzzleItem / item / script / s_arg1 / s_arg2 / s_arg3

		item: item number needed to activate
		script: script to run upon activation

	 Runs a script upon use of appropriate puzzle item:

	 0 ZZ_Skull
	 1 ZZ_BigGem
	 2 ZZ_GemRed
	 3 ZZ_GemGreen1
	 4 ZZ_GemGreen2
	 5 ZZ_GemBlue1
	 6 ZZ_GemBlue2
	 7 ZZ_Book1
	 8 ZZ_Book2
	 9 ZZ_Skull2
	 10 ZZ_FWeapon
	 11 ZZ_CWeapon
	 12 ZZ_MWeapon
	 13 ZZ_Gear
	 14 ZZ_Gear2
	 15 ZZ_Gear3
	 16 ZZ_Gear4

 140:Sector_ChangeSound / tag / sound / arg3 / arg4 / arg5

		tag: tag of sector to contain sound
		sound: sound to be played - see sector sounds

 120:Radius_Quake / intensity / duration / damrad / tremrad / tid

		intensity: strength of earthquake in richters [1..9]
		duration: duration in tics [1..255]
		damrad: radius of damage in 64x64 cells [0..255]
		tremrad: radius of tremor in 64x64 cells [0..255]
		tid: TID of map thing(s) for quake foci

	 Creates an earthquake at all matching foci.

 138:Floor_Waggle / tag / amplitude / speed / delay / oscillations

		tag: tag of sector to waggle
		amplitude: height of change
		speed: rate of change
		delay: delay until start of change
		oscillations: number of up/down cycles

	 Creates an earthquake at all matching foci.

 74:Teleport_NewMap / map / position / arg3 / arg4 / arg5

		map: map to teleport to
		position: corresponds to destination player start spot arg0.

	 Teleports the player to a new map and to the player start spot
	 whose arg0 member matches 'position.'

 75:Teleport_EndGame / arg1 / arg2 / arg3 / arg4 / arg5

	 Ends game and runs finale script.
	 In deathmatch, teleports to level 1.

 70:Teleport / tid / arg2 / arg3 / arg4 / arg5

		tid: TID of destination

	 Teleports triggering object to MapSpot with tid.

 71:Teleport_NoFog / tid / arg2 / arg3 / arg4 / arg5

	 Same as teleport, but silent with no fog sprite.

 Thing Specials

 72:ThrustThing / angle / distance / arg3 / arg4 / arg5

		angle: byte angle to thrust [0..255]
		distance: distance to thrust

 73:DamageThing / damage / arg2 / arg3 / arg4 / arg5

		damage: amount of damage

 130:Thing_Activate / tid / arg2 / arg3 / arg4 / arg5

		tid: TID of thing to activate (see activatable things)

 131:Thing_Deactivate / tid / arg2 / arg3 / arg4 / arg5

		tid: TID of thing to deactivate (see deactivatable things)

 132:Thing_Remove / tid / arg2 / arg3 / arg4 / arg5

		tid: TID of thing to remove

 133:Thing_Destroy / tid / arg2 / arg3 / arg4 / arg5

		tid: TID of affected thing

	 Puts thing into its death state.

 134:Thing_Projectile / tid / type / angle / speed / vspeed

		tid: TID of spawn location
		type: Type of thing to spawn (see spawnable things)
		angle: byte angle of projectile
		speed: speed of projectile
		vspeed: vertical speed

	 Spawns a projectile.

 136:Thing_ProjectileGravity / tid / type / angle / speed / vspeed

		tid: TID of spawn location
		type: Type of thing to spawn (see spawnable things)
		angle: byte angle of projectile
		speed: speed of projectile
		vspeed: vertical speed

	 Spawns a projectile with gravity.

 135:Thing_Spawn / tid / type / angle / arg4 / arg5

		tid: TID of spawn location
		type: Type of thing to spawn (see spawnable things)
		angle: byte angle of thing to face

	 Spawns a thing.

 137:Thing_SpawnNoFog / tid / type / angle / arg4 / arg5

		tid: TID of spawn location
		type: Type of thing to spawn (see spawnable things)
		angle: byte angle of projectile

	 Spawns a thing silently.

 PolyObject Specials

 1:Polyobj_StartLine / po / mirror / sound / arg4 / arg5

		po: refer to a particular polyobj
		mirror: poly that will mirror the moves of this poly
		sound: See Section 5: Sector Sound

 2:Polyobj_RotateLeft / po / speed / angle / arg4 / arg5

		po: polyobj
		speed: speed
		angle: byte angle to rotate

 3:Polyobj_RotateRight / po / speed / angle / arg4 / arg5

		po: polyobj
		speed: speed
		angle: byte angle to rotate

 4:Polyobj_Move / po / speed / angle / distance / arg5

		po: polyobj
		speed: speed
		angle: byte angle to move along
		distance: byte distance to move

 5:Polyobj_ExplicitLine / po / order / mirror / sound / arg5

		po: polyobj
		order: rendering order of this line
		mirror: poly that will mirror the moves of this poly
		sound: See Section 5: Sector Sound

 6:Polyobj_MoveTimes8 / po / speed / angle / distance / arg5

		po: polyobj
		speed: speed
		angle: byte angle
		distance: byte distance to move in units of 8

 7:Polyobj_DoorSwing / po / speed / angle / delay / arg5

		po: polyobj
		speed: speed
		angle: byte angle
		delay: delay in tics

 8:Polyobj_DoorSlide / po / speed / angle / distance / delay

		po: polyobj
		speed: speed
		angle: byte angle
		distance: byte distance
		delay: delay in tics

 90:Polyobj_OR_RotateLeft / po / speed / angle / arg4 / arg5
 91:Polyobj_OR_RotateRight / po / speed / angle / arg4 / arg5
 92:Polyobj_OR_Move / po / speed / angle / distance / arg5
 93:Polyobj_OR_MoveTimes8 / po / speed / angle / distance / arg5

 The OR stands for OverRide. As stated before, each poly can only be doing
 a single action at a time. This poses a problem with perpetual polyobjs,
 since they are already moving, the designer cannot do anything else with
 them.

 However, using these functions the designer can override the code to not
 allow a poly to concurrently execute more than one action, and force a poly
 to do the other action as well.

14
.
 Sector Sounds for ChangeSectorSound() special:

=======================================

	1 heavy
	2 metal
	3 creak
	4 silence
	5 lava
	6 water
	7 ice
	8 earth
	9 metal2

15
.
 Sounds for ThingSound() (Added by SBS)

=====================================

 void thingsound(int tid, str name, int volume);

 str name possible names (can be found in SNDINFO lump)

	 PLAYER SOUNDS

=============================

 PlayerLand
 PlayerPoisonCough
 PlayerFallingSplat

 Fighter

==========

 PlayerFighterNormalDeath
 PlayerFighterCrazyDeath
 PlayerFighterExtreme1Death
 PlayerFighterExtreme2Death
 PlayerFighterExtreme3Death
 PlayerFighterPain
 PlayerFighterGrunt
 PlayerFighterFallingScream
 PlayerFighterBurnDeath
 PlayerFighterFailedUse

 FighterPunchMiss
 FighterPunchHitWall
 FighterPunchHitThing
 FighterAxeHitThing
 FighterHammerMiss
 FighterHammerHitWall
 FighterHammerHitThing
 FighterHammerContinuous
 FighterHammerExplode
 FighterSwordFire
 FighterSwordExplode
 FighterGrunt

 Cleric

==========

 PlayerClericNormalDeath
 PlayerClericCrazyDeath
 PlayerClericExtreme1Death
 PlayerClericExtreme2Death
 PlayerClericExtreme3Death
 PlayerClericPain
 PlayerClericGrunt
 PlayerClericFallingScream
 PlayerClericBurnDeath
 PlayerClericFailedUse

 ClericCStaffFire
 ClericCStaffExplode
 ClericCStaffHitThing
 ClericFlameFire
 ClericFlameExplode
 ClericFlameCircle
 HolySymbolFire
 SpiritActive
 SpiritAttack
 SpiritDie

 Mage

=========

 PlayerMageNormalDeath
 PlayerMageCrazyDeath
 PlayerMageExtreme1Death
 PlayerMageExtreme2Death
 PlayerMageExtreme3Death
 PlayerMagePain
 PlayerMageGrunt
 PlayerMageFallingScream
 PlayerMageBurnDeath
 PlayerMageFailedUse

 MageWandFire
 MageLightningFire
 MageLightningContinuous
 MageLightningReady
 MageLightningZap
 MageShardsFire
 MageShardsExplode
 MageStaffFire
 MageStaffExplode

 Pig

=========

 PigActive1
 PigActive2
 PigPain
 PigAttack
 PigDeath

=======
========================

	 MONSTER SOUNDS

===============================

 Bishop

==========

 BishopSight
 BishopActive
 BishopPain
 BishopAttack
 BishopDeath
 BishopMissileExplode
 BishopBlur

 Centaur

===========

 CentaurSight
 CentaurActive
 CentaurPain
 CentaurAttack
 CentaurDeath
 CentaurLeaderAttack
 CentaurMissileExplode

 Serpent

==============

 SerpentSight
 SerpentActive
 SerpentPain
 SerpentAttack
 SerpentMeleeHit
 SerpentDeath
 SerpentBirth
 SerpentFXContinuous
 SerpentFXHit

 Demon

===============

 DemonSight
 DemonActive
 DemonPain
 DemonAttack
 DemonDeath
 DemonMissileFire
 DemonMissileExplode

 Wraith

===============

 WraithSight
 WraithActive
 WraithPain
 WraithAttack
 WraithDeath
 WraithMissileFire
 WraithMissileExplode

 Maulator

================

 MaulatorSight
 MaulatorActive
 MaulatorPain
 MaulatorHamSwing
 MaulatorHamHit
 MaulatorMissileHit
 MaulatorDeath

 Ettin

==============

 EttinSight
 EttinActive
 EttinPain
 EttinAttack
 EttinDeath

 Fire Demon

==============

 FireDemonSpawn
 FireDemonActive
 FireDemonPain
 FireDemonAttack
 FireDemonMissileHit
 FireDemonDeath

 Ice Guy

==============

 IceGuySight
 IceGuyActive
 IceGuyAttack
 IceGuyMissileExplode

 Sorcerer Boss

==============

 SorcererSight
 SorcererActive
 SorcererPain
 SorcererSpellCast
 SorcererBallWoosh
 SorcererDeathScream
 SorcererBishopSpawn
 SorcererBallPop
 SorcererBallBounce
 SorcererBallExplode
 SorcererBigBallExplode
 SorcererHeadScream

 Dragon

==============

 DragonSight
 DragonActive
 DragonWingflap
 DragonAttack
 DragonPain
 DragonDeath
 DragonFireballExplode

 Korax

==============

 KoraxSight
 KoraxActive
 KoraxPain
 KoraxAttack
 KoraxCommand
 KoraxDeath
 KoraxStep

 Korax Voice sounds

================

 KoraxVoiceGreetings
 KoraxVoiceReady
 KoraxVoiceBlood
 KoraxVoiceGame
 KoraxVoiceBoard
 KoraxVoiceWorship
 KoraxVoiceMaybe
 KoraxVoiceStrong
 KoraxVoiceFace

 Alternate monster pain sound (in gas cloud, lightning zapped, wraithverged)

 PuppyBeat

=================================

	 WORLD SOUNDS

=================================

 Platform Sounds

=================

 PlatformStart
 PlatformStartMetal
 PlatformStop
 StoneMove
 MetalMove

 Door Sounds

=================

 DoorOpen
 DoorLocked

 DoorOpenMetal
 DoorCloseMetal
 DoorCloseLight
 DoorCloseHeavy
 DoorCreak

=====================================

	 MISCELLANEOUS SOUNDS

=====================================

 BatScream
 BellRing
 BlastRadius

 Chat
 ClockTick

 Drip

 EarthStartMove
 Earthquake
 EtherealTeleport

 Fireball generic fireball projectile
 FlyBuzz
 FreezeDeath
 FreezeShatter

 FlechetteBounce
 FlechetteExplode

 GlassShatter

 IceStartMove
 Ignite

 LavaMove
 LavaSizzle

 MysticIncant attached to each player affected

 PickupWeapon
 PickupArtifact
 PickupKey
 PickupItem
 PickupPiece Pickup part of the final weapon
 PoisonShroomPain
 PoisonShroomDeath
 PotteryExplode
 PuzzleFailFighter
 PuzzleFailCleric
 PuzzleFailMage
 PuzzleSuccess

 Respawn
 RopePull

 SludgeGloop
 StartupTick
 SuitofArmorBreak
 Switch1
 Switch2
 SwitchOtherLevel

 Teleport
 ThrustSpikeRaise
 ThrustSpikeLower
 ThunderCrash
 TreeBreak
 TreeExplode

 UseArtifact

 ValveTurn

 WaterMove
 WaterSplash
 WeaponBuild Built the final weapon
 Wind

 Ambient sounds

=================

 Ambient1 insects1
 Ambient2 crkets
 Ambient3 crkets1
 Ambient4 katydid
 Ambient5 frogs
 Ambient6 owl
 Ambient7 bird
 Ambient8 shlurp
 Ambient9 bubble
 Ambient10 drop2
 Ambient11 rocks
 Ambient12 chains
 Ambient13 gong
 Ambient14 steel1
 Ambient15 steel2

16
.
 Key Numbers

==================

 These are referenced by the DoorRaiseLocked() and ACS_ExecuteLocked()
 specials.

	1 steel key
	2 cave key
	3 axe key
	4 fire key
	5 emerald key
	6 dungeon key
	7 silver key
	8 rusted key
	9 horn key
	10 swamp key
	11 castle key

End of Specs

=========

