The CarnageCAM

Cut Sequence Engine for Epic MegaGame’s Unreal

© 1998, Creative Carnage, LLC

version 1.0

What is the CarnageCAM

The CarnageCAM is a series of classes written in UnrealScript that simplifies the creation of in game cut sequences. Unreal is known for it’s single player experience and the amount of drama created in the game world. The CarnageCAM takes the powerful scripting ability of Unreal and extends on it by offering multiple camera positions, moving cameras and more.

CREDITS

The CarnageCAM is 99% custom code. We originally use Green Marine’s Omni-CAM as a base but in time moved away from his method to what seems to be a better way. A nod also has to go to Adam Alpern and Naliwood productions for originally coming up with the idea. If he didn’t go off and get married, I probably never would have written this. I wish him luck.

Classes Included with the CarnageCAM

The following classes are included with the CarnageCAM package.

CS_HUD.UC – expands UnrealHUD. This is our custom hud. It adds two additional HUD modes. One for the normal cut sequence playback, and one for LetterBoxed mode that supports the proper 16:9 aspect ratio.

CS_SINGLEPLAYER.UC – expands UnrealGameInfo. This is a new type of game. It’s needed in order to put our custom player classes in place.

CS_CAMERA.UC – expands keypoint. This is the actual camera you will place in the game.

CS_SPIKETAPE.UC – expands keypoint. This can be used to lock a player (or in time an actor) on a target and move them there.

CSPLAYER.UC – expands UnrealIPlayer. This class and all of it’s children hold our custom player classes.

CSSEQ.UC – expands Triggers. This is a dummy class that simply allowed us to bundle many of the control classes together.

CS_ACTION.UC, CS_ADJUSTCAMERA.UC, CS_CHANGEATTITUDE.UC, CS_DOLLYOTHER.UC, CS_DOLLYPLAYER.UC, CS_FOLLOWPLAYER.UC,

CS_LOCKON.UC, CS_LOCKONOTHER.UC, CS_MOVEACTOR.UC,

CS_OUTTEXT.UC, CS_PLAYERACT.UC, CS_PLAYERLOOKAT.UC, CS_PLAYERMOVE.UC, CS_PLAYERMOVETO.UC, CS_PLAYERRESETMOVE.UC, CS_RELEASE.UC, CS_SETTARGET.UC, CS_SHOTLIST.UC, CS_WRAP.UC and CS_STOPCAMERA.UC - expand CSSEQ. These are the work horse classes.

How the CarnageCAM works (overview)

The CarnageCAM’s process is actually fairly simple. You add cameras to the world, build a shot list, and then yell action. When it’s all over.. it’s a wrap (
To add the CarnageCAM to your project, you need to follow these steps.

Step #1: Add the CarnageCAM Cut Sequence package to your UNREAL.INI file. It’s package name is CutSequences.u. Do this by location the [Editor.EditorEngine] section in the UNREAL.INI file, go to the end, and add a new EditPackage.

You also will need to include the CutSequences.u file with your maps, but end-users do not need to specifically load this, only someone doing editing.

Step #2: Any map that you wish to do a cut sequence in must be of the gametype CS_SinglePlayer. Press F6, go to LevelInfo and set the DefaultGameType to CS_SinglePlayer (the class is located under info|gameinfo|unrealgameinfo).

Your map is now ready to create a Cut Sequence. Let’s take a look at how the actual camera system works.

There is of course the CS_CAMERA class. This is your actual camera. When activated from a CS_SHOTLIST (more on this in a sec) the players view is rendered from where ever the CS_CAMERA is located. The engine will also use the ROTATOR for the camera to determine the pitch/yaw/roll. You can adjust where the camera is looking at by simply rotating the camera in the editor.

The next component of the engine is the CS_ACTION class. This is a trigger that must get called before anything else will happen. It’s job is to setup the hud, put the player in to Cut Scene mode, and then execute the first CS_SHOTLIST. It takes 2 parameters. The first is FIRSTSHOTLIST which should hold the name (ie: the value in the TAG field) of the First CS_ShotList to be triggered. The CarnageCAM allows for an unlimited number of shot lists. The second option is LETTERBOXED. If this is true, the Cut Scene will be displayed with a theater style letterbox.

Each Cut Sequence MUST have at least one CS_ACTION actors to trigger it. It must also have at least one CS_SHOTLIST.

The CS_SHOTLIST is the next component you need to add. Although it expands on trigger, it is really an expanded Dispatcher. I put it here since the Dispatcher code was so small and this made it easier to find. It holds a list of all cameras, events and the delays between each. It has 3 settings. OutCamera is a list of cameras to switch to. To switch to a camera, simply place it’s name (tag) in the OutCamera field. The OutEvents list is a list of triggers to be called at each sequence. Anything that can be triggered can be called from this field, and you can of course call a Dispatcher to handle multiple events. The final field is OutDelays and this holds a list of delays.

The CS_SHOTLIST works as follows. When it is triggered it loops through the 8 sequences (notice that each setting can hold 8 values). For each sequence it switches to the appropriate camera (as defined by OutCamera), triggers the appropriate event (as defined by OutEvents) and then waits for an amount of time (as defined by OutDelays). It then moves to the next sequence.

It’s important to realize you do not have to switch cameras or trigger an event for each sequence. You can do either, both, or neither.

The CS_WRAP is triggered from the last CS_SHOTLIST in your cut sequence. It tells the game to switch the view back to the player and reset the hud and anything else that needed. Like CS_ACTION, there should be one and only one CS_WRAP in every sequence.

There are two other classes included with this package. CS_ADJUSTCAMERA is used to adjust the ROTATION and VELOCITY of the camera. By including this actor in your CS_SHOTLIST under OutEvents, you can create moving shots and camera pans just like a big movie.

The CS_ADJUSTCAMERA has three properties. ADJ_DesiredRotation allows you to cause the camera to rotate about an axis. You use it by setting it’s value to 1 for rotation or 0 for stationary.

ADJ_ROTATIONRATE holds the rates for the three posible rotation directions (pitch, roll, and yaw). These settings alllow you to control the speed at which the camera pans around.

ADJ_VELOCITY is used to adjust how fast the camera is moving through space and in what direction. Remember that Velocity is always relative to the direction the camera is facing.

Once a camera is moving or rotating, you stop it by using the CS_STOPCAMERA actor. Like CS_ADJUSTCAMERA, you simply add this actor to your CS_SHOTLIST under events. It takes no parameters and will stop the camera dead in it’s tracks.

Both CS_ADJUSTCAMERA and CS_STOPCAMERA need to be linked to the CS_CAMERA they are affecting. Do this just like any other trigger and place the CS_CAMERA’s tag in the CS_ADJUSTCAMERA/CS_STOPCAMERA’s event field.

CLASS Reference Manual

CS_ACTION – This class needs to be called so that the cut sequence engine will become active. It’s job is to setup the display and then call the first CS_ShotList.

Default Properties:

Retriggerable
Boolean
When set, the trigger can happen more than once. This is usefull for doing Lara Croft/Tomb Raider style sequences when you hit a switch or button. NOT 100% DEBUGGED AT THIS TIME!

FirstShotList
Name
This should be the name (TAG) of the first CS_SHOTLIST in your sequence.

Letterboxed
Boolean
When TRUE, the cut sequences will be in letterboxed format (16:9 aspect ratio).

First Camera
Name
This should be the name (TAG) of the first camera to activate. The CS_ACTION trigger will cause that camera to become active. This helps make a smooth transition.

FIRSTLOCK
Name
If you want to lock the camera on to the player. Set this field to the name (TAG) of the CS_LOCKON actor to use.

FREEZEACTOR
Boolean
If you want to restrict the player (ie: Unreal ignores any movement/firing… set this field to true.

CS_ADJUSTCAMERA – This class allows you to adjust how the camera is moving through the world. You can alter it’s velocity or rotation. CS_AdjustCamera is included only for kicks. There are better ways to make a camera move and rotate.

Default Properties:
Adj_DesiredRotation
Rotator
This property actually takes 3 values, Pitch, Roll and YAW. By setting any of the values to 1 will cause the camera to rotate accordingly.

ADJ_RotationRate
Rotator
This property also has 3 values. They define how fast the camera will pitch/roll/yaw when the above property is set.

ADJ_Velocity
Vector
This property has 3 values. Each is a velocity setting for a given vector (X/Y/Z). It will cause the camera to move in that direction using it’s setting to determine the speed.

CS_CAMERA – This class is the actual camera that the viewpoint will come from. Think of it just like a movie camera. It can be positioned, moved, rotated, etc. You set it’s initial Roll/Pitch/Yaw in UnrealED.

Default Properties
None

CS_CHANGEATTITUDE – This class is used to change the attitude on any scripted pawn.

Default Properties

EAttitude
Enum
This is the new attitude to change the pawn to.

Event
Name
All actors with this name (TAG) will have their attitude changed.

CS_DOLLYOTHER – This class will cause the current camera to dolly (rotate) around an a given actor. This class is included for shits and giggles as there are better ways to do this ;)

Default Properties
DollyVelocity
Vector
How fast should the camera move.

Target
Name
The Camera will dolly around the actor with this name (TAG). If more than one actor has this tag, the camera will dolly around the last one added to the map.

CS_DOLLYPLAYER – Same as CS_DollyOther only it forces the camera to dolly around the player who triggered the CS_ACTION.

Default Properties
DollyVelocity
Vector
How fast should the camera move.

CS_FOLLOWPLAYER – This is one of the most powerful classes. What this does is causes the camera to mimic the player’s movement. I use this a lot.

Default Properties
None

CS_HUD – This is our special HUD class that allows for the letter boxed effect. It’s used by the CS_SinglePlayer Game type.

Default Properties
None

CS_LockOn – This is an important class. It allows you to lock a camera on to the player. Once locked, the camera will automatically pan/roll/pitch to follow the player where ever they go.

Default Properties
None

CS_LockOnOther – This is also an important class. It allows you to lock a camera on to any actor. Once locked, the camera performs exactly like CS_LockOn above.

 Default Properties
Target
Name
The camera will lock on to any actor with this name (TAG).

CS_OutText – This class will cause a message to be displayed on the screen.

Default Properties
WhatToSay
String[50]
The text that should be displayed.

CS_PlayerACT – This class causes the player to perform an animation. These animations are defined in CS_PLAYER.UC! Each additional animation must be coded in to the CS_PLAYER source.

Default Properties
ActionCode
Integer
This is a code that tells the player what to do. The defaults animations are:

0 : TAUNT1

1 : LOOK

2 : WAVEL

3 : VICTORY1L

To add more animations, edit CS_PLAYER and find the function ACT.

CS_PlayerLookAt – This class will cause the player to look at a given CS_SpikeTape actor. This is commonly used in the end of the sequence to make a smooth transition.

Default Properties

NewLocation
Name
This is the name (TAG) of the CS_SpikeTape actor to look at.

BIgnorePitchNRoll
Boolean
When TRUE, the player’s pitch and roll will be ingored when adjusting view. This allows you to be not so exact in placing the CS_SpikeTape.

CS_PlayerMove – This class will cause the player to move in a given direction, just like the player was moving him. This has since been replaced with CS_PlayerMoveTo which is easier to use.

Default Properties
NewVelocity
Vector
The speed in which to move.

CS_PlayerMoveTo – This class will cause the player to turn towards a CS_SpikeTape and move in that direction at the NewVelocity.

Default Properties

NewVelocity
Vector
The speed in which to move.

BignorePitchNRoll
Boolean
When TRUE, the player’s pitch and roll will be ingored when adjusting view. This allows you to be not so exact in placing the CS_SpikeTape.

Event
Name
The name (TAG) of the CS_SpikeTape to move towards.

CS_PlayerResetMove – This class stops the player from moving.

Default Properties
None

CS_Release – This class releases a camera that is locked on to an actor.

Default Properties
None

CS_SetTarget – This class sets the target of an actor to another actor. It’s great to make a monster rip something apart.

Default Properties
NewTarget
Name
This is the name (TAG) of the new target

Event
Name
All actions with this name (TAG) will be effected.

CS_ShotList – This class is one of the most important. It holds a listing of all of the other classes that get triggered during a shot. Each sequence can have an unlimited number of CS_Shotlists, each one being linked to the next.
Default Properties

OutCamera
Name x 8
The first property is an 8 item array. This array holds 8 different names (TAGS) of different cameras to view from.

It’s been my habbit to use only 1 camera (and sometimes none) per CS_SHOTLIST but you don’t need to limit yourself to that.

OutEvents
Name x 8
Each CS_Shotlist can spawn up to 8 events. For example, it could call CS_LOCKON, or CS_PLAYERMOVETO. This is where you do this. Each of these fields should hold the name (TAG) of the event you wish to trigger.

OutDelay
Int x 8
This is the amount of time (in milliseconds) the CS_SHOTLIST should pause at each item.

It’s important to understand how the CS_SHOTLIST works. When it’s triggered, it enters a big loop. First it checks to see if it needs to switch to a new camera (as defined in OutCamera). It then checks to see if it should trigger an event (as defined in OutEvents). It then waits for OutDelay milliseconds before starting over.

It will do this 8 times (hence the 8 item arrays). Each time it can switch to 1 camera and trigger one event.

At no time do you need to switch cameras or trigger an event. You can simply add a delay and the last actions will continue to happen. Play with it.. it’s preaty damn simple.

It’s also important to understand that you can use OutEvents to point to another CS_SHOTLIST. This allows you to string multiple CS_Shotlists together to create the scene.

CS_SpikeTape – This class expands KeyPoint and is used to direct actors towards it. Right now it’s only used with the CS_PLAYERs, but in time, all actors will be able to use it.

Default Properties
FinishAnimation
Name
This field is currently unused (I think).

BStopWhenTocuhed
Boolean
This field is used to force a player (or in time an actor) to STOP COLD when they reach this CS_SpikeTape. This allows for very exacting movement. Wow.. my Theater degree is actually paying off ;)

CS_StopCamera – This class causes a camera to stop any movement it is currently undergoing.

Default Properties
None

CS_Wrap – This class is the last thing your Cut Sequence should call. IT MUST be called to end the sequence. If it is not, the player will be left in a menuless, camera view mode.

Default Properties
BsetFinalRotation
Boolean
If TRUE you can set the rotation of the actor before it ends. This allows for smooth final transitions.

CS_FEMALE,
CS_FEMALEONE,
CS_FEMALETWO,
CS_MALE,
CS_MALEONE,
CS_MALETWO,
CS_MALETHREE,
CS_SKAARJPlayer – All of these classes are duplicates of the original player classes with modifications for the Cut Sequence Engine. You should never have to worry about these.

Default Properties
None

CS_PLAYER – This is the new basic player class. It has all the new code needed to handle the cut sequence engine. DO NOT TOUCH unless your fairly proficient with UnrealScript.

Default Properties
None

Where to go from here

There are a lot of different things you can do with this cut sequence engine. Have fun. If your going to do more than just learn from this, please be sure to read the legal section below.

Feedback and Support

I’m always happy to hear feedback or suggestions, bug lists, etc for something. There is no support per se, but feel free to email me with any questions regarding the code, how we did something or for help. I’ll try and answer them as I can (I’m quite busy right now).

I can be reached at: mrsin@creativecarnage.com
COPYRIGHT/LEGAL

The CarnageCAM package version 1.0 is no longer public domain. Copyright to the original source code remain with Creative Carnage LLC. We are granting everyone the limited right to use and modify the CarnageCAM for any NON-COMMERICAL project. (this covers 99% of all TC’s and user maps);

This means that anyone may use or modify the CarnageCAM for use in their own project as long as the following conditions are met:

1) original source is noted.

2) The project is never sold or made commercially available.

However if you do use/modify the CarnageCAM please let me know (my email is above). The CarnageCAM also cannot be used as the basis for a derivative package used in a commerical product.

By releasing the CarnageCAM it’s our intention to help the unreal community grow and to encourage other people developing mods to release their code, but it is not our intention to allow others to profit from our work. If you make any changes or additions to this package, please send them to us so we can include them for everyone to use.

