
Run-Length Compression of Large Sparse

Potential Visible Sets

J.M.P. van Waveren

May 22nd 2007

© 2007, Id Software Inc

Abstract

An efficient algorithm is presented for lossless compression of very large

Potentially Visible Sets with high occlusion ratios.

1. Potential Visible Set

A Potentially Visible Set (PVS) is a directional mapping that defines visibility between pairs of

objects and/or locations. The mapping is directional because if B is visible to A then A is not

necessarily visible to B. Potential Visible Sets are often based on convex hulls or areas that are

created with a Binary Space Partitioning (BSP) algorithm. In the context of PVS data, these

convex hulls or areas are typically referred to as cells.

A PVS is particularly useful to speed up rendering solutions because it allows many cells or

objects that can never be seen from a particular location to be quickly discarded [1]. Although a

PVS is typically associated with rendering, it can also be used for other purposes. A PVS can for

instance improve the performance of a networking solution [4] by using the PVS to determine

which objects need to be synchronized over a network based on visibility.

A PVS can also be used in a context where the term visibility does not necessarily refer to sight.

A PVS can for instance be used to quickly cull objects for an obstacle avoidance solution for

robots or artificial intelligence (AI). A building may be subdivided into rooms filled with

dynamic obstacles, and for obstacle avoidance purposes it may be necessary to quickly gather all

objects that need to be considered as obstacles in the current room and nearby rooms. In this

context, nearby rooms are not necessarily visible, and also not necessarily nearby based on

Euclidean distance. For instance, a path around obstacles may lead through rooms that are not

visible and rooms below or above the robot or AI may be physically nearby but may not need to

be considered for obstacle avoidance because they are out of reach. In the context of obstacle

avoidance "visibility" typically refers to being reachable within a certain distance or time.

PVS data is typically stored as a set of bit strings. In such a bit string the offset of a bit denotes a

cell index. A bit set to one denotes visible, and a bit set to zero denotes not visible. To store

directional visibility information for all pairs of cells, these bit strings are either the rows or

columns in a visibility matrix. The rows typically store all cells visible to a cell, and the columns

file:///Z:/TechDocs/Games/ETQW/PVSCompression/PVSCompression.html%23ref1
file:///Z:/TechDocs/Games/ETQW/PVSCompression/PVSCompression.html%23ref4

store all the cells from which a cell is visible. Even though only one bit is stored for each

directed pair of cells the matrix may still consume a large amount of memory if there are

thousands of cells.

Clusters of cells can be used to shrink the PVS data [2, 3]. Instead of storing the visibility of cells

the visibility of groups of cells is stored. Because there are fewer clusters than cells, the amount

of PVS data is reduced. Using clusters can be considered a lossy form of compression because

some visibility information between individual cells may be lost. Using clusters may also come

at a cost. Relevant PVS dependent data is often stored per cell and a mapping from cells to

clusters and back may be required to access this data. Such a mapping consumes memory by

itself.

The cells can also be reordered such that longer sequences of zero bits are created that typically

compress better. However, finding the optimal order of cells is a complex optimization problem.

The following sections focus on algorithms for lossless compression of PVS bit strings without

reordering the cells.

2. Bit String Compression

The decompression of compressed PVS data needs to be fast and simple because a PVS is

typically used to speed up or avoid more expensive computations. In particular iterating over all

cells visible to a cell needs to be quick and easy.

Applying an entropy encoder like Huffman is not optimal because the PVS data is not a sequence

of fixed bit size words. For the same reason arithmetic coding of a PVS bit string does not work

well. When a PVS bit string is chopped up in fixed size words, the distribution is very uneven

where there are many words with only zero bits and all non-zero words may appear at similar

frequencies.

PVS data consists of many zeros and long sequences of zeros but there may also be short runs of

bits with seemingly random values. The best PVS compression ratios are typically achieved by

using Run-Length Encoding (RLE). If the most frequent symbol is precisely known, RLE can be

improved to encode only sequences of this symbol and leave all others uncoded. In the case of

PVS data the obvious symbol is a single zero bit or some sequence of zero bits like a zero byte.

3. Quake PVS Compression

The computer game Quake used a very simple byte based RLE algorithm to compress the PVS

bit strings used for both rendering and networking. This algorithm writes out a byte in whole to

the compressed stream if a byte is unequal zero. If a byte is zero then first a zero byte is written

to the compressed stream followed by a byte that represents the number of consecutive bytes also

set to zero.

file:///Z:/TechDocs/Games/ETQW/PVSCompression/PVSCompression.html%23ref2
file:///Z:/TechDocs/Games/ETQW/PVSCompression/PVSCompression.html%23ref3

typedef unsigned char byte;

int CompressPVS(const byte *pvs, int numBytes, byte *compressed) {

 byte * out = compressed;

 for (int i = 0; i < numBytes; i++) {

 *out++ = pvs[i];

 if (pvs[i]) {

 continue;

 }

 int c = 0;

 for (i++; i < numBytes; i++) {

 if (pvs[i] || c == 256) {

 break;

 }

 c++;

 }

 *out++ = c;

 i--;

 }

 return out - compressed;

}

void DecompressPVS(byte *pvs, int numBytes, const byte *compressed) {

 const byte * in = compressed;

 byte * out = pvs;

 do {

 if (in[0]) {

 *out++ = *in++;

 continue;

 }

 for (int c = in[1] + 1; c != 0; c--) {

 *out++ = 0;

 }

 in += 2;

 } while(out - pvs < numBytes);

}

The compressed data is byte aligned which makes decompression simple and fast. Worst case the

compressed data is 1.5 times larger than then the uncompressed data when the PVS bit string is a

sequence of bytes with values that alternate between zero and not zero. The encoder works really

well for shorter bit strings (< 5000 cells) with occlusion percentage of 80% to 95%. For longer

bit strings with sequences of more than 2048 consecutive zero bits (= 256 * 8-bits) the

compression can be improved.

4. Compression of Very Long PVS Bit Strings

The following algorithm is the result of a first attempt at trying to implement an encoder that

more efficiently deals with very long sequences of zero bits. The bit string is encoded using

blocks of 16 bits, where the first 12 bits represent the number of consecutive zero bits and the

next 4 bits represent the number of consecutive one bits that follow the sequence of zero bits. By

using 12 bits to encode sequences of zero bits the encoder is more efficient when there are very

long sequences of more than 2048 zero bits. In particular the encoder can encode sequences of

up to 2^12 = 4096 zero bits more efficiently.

#define PVS_RLE_ZERO_BITS 12

#define PVS_RLE_ONE_BITS 4

int CompressPVS(const byte *pvs, int numBytes, byte *compressed) {

 byte *out = compressed;

 int numBits = numBytes * 8;

 for (int index = 0; index < numBits;) {

 int numZeros;

 for (numZeros = 0; index + numZeros < numBits && numZeros < ((1 << PVS_RLE_ZERO_BITS) - 1); numZeros++) {

 if ((pvs[(index + numZeros) >> 3] & (1 << ((index + numZeros) & 7))) != 0) {

 break;

 }

 }

 index += numZeros;

 int numOnes;

 for (numOnes = 0; index + numOnes < numBits && numOnes < ((1 << PVS_RLE_ONE_BITS) - 1); numOnes++) {

 if ((pvs[(index + numOnes) >> 3] & (1 << ((index + numOnes) & 7))) == 0) {

 break;

 }

 }

 index += numOnes;

 int rleBits = numZeros | (numOnes << PVS_RLE_ZERO_BITS);

 *out++ = rleBits & 255;

 *out++ = rleBits >> 8;

 }

 return out - compressed;

}

void DecompressPVS(byte *pvs, int numBytes, const byte *compressed) {

 memset(pvs, 0, numBytes);

 int numBits = numBytes * 8;

 for (int offset = 0, index = 0; index < numBits;) {

 int rleBits = compressed[offset++] | (compressed[offset++] << 8);

 int numZeros = rleBits & ((1 << PVS_RLE_ZERO_BITS) - 1);

 index += numZeros;

 int numOnes = rleBits >> PVS_RLE_ZERO_BITS;

 for (int i = 0; i < numOnes; i++) {

 pvs[index >> 3] |= 1 << (index & 7);

 index++;

 }

 }

}

This encoder sometimes works better than the Quake encoder but quite often also worse than the

Quake encoder. In particular the compression does not work well if there are sequences of

alternating bits. The encoder works better if there are very long sequences of consecutive zero

bits of more than 2048 bits. This compressor shows that it is important to be able to efficiently

encode bit sequences of consecutive zeros that are longer than 2048 bits (otherwise this

compressor would never outperform the Quake compressor). However, it is also important to be

able to store immediate values with alternating bit sequences directly from the PVS bit string.

The compressor shown below still produces byte aligned data which allows for simple and fast

decompression. However, the following compressor not only allows longer sequences of zero

bits to be encoded but also allows immediate values to be placed directly into the compressed

data.

The following algorithm compresses PVS bit strings such that if the first bit of a byte of

compressed data is set to zero the next 7 bits contain an immediate value with actual PVS bits. If

the first bit is set to one the next 7 bits and possibly the next byte of the compressed data store a

run of zeros. If the first bit is set to one and the second bit is set to zero then the next 6 bits store

the number of consecutive bits set to zero. If the first bit and the second bit are both set to one

then the next 6 bits plus the next 8 bits of compressed data store the number of consecutive bits

set to zero.

#define PVS_RLE_IMMEDIATE_BITS 7 // number of bits available to encode an immediate

#define PVS_RLE_1ST_COUNT_BITS 6 // default number of bits to encode a run of zeros

#define PVS_RLE_2ND_COUNT_BITS 8 // one additional byte to encode a run of zeros

#define PVS_RLE_RUN_GRANULARITY 1 // can be set to a higher value if runs of more

 // than 16384 zeros are common

#define PVS_RLE_RUN_BIT (1 << 7)

#define PVS_RLE_RUN_LONG_BIT (1 << 6)

int CompressPVS(const byte *pvs, int numBytes, byte *compressed) {

 byte *out = compressed;

 int numBits = numBytes * 8;

 for (int index = 0; index < numBits;) {

 int numNotVis;

 for (numNotVis = 0; index + numNotVis < numBits; numNotVis++) {

 if ((pvs[(index + numNotVis) >> 3] &

 (1 << ((index + numNotVis) & 7))) != 0) {

 break;

 }

 }

 if (numNotVis >= PVS_RLE_IMMEDIATE_BITS) {

 if (numNotVis > (1 << PVS_RLE_1ST_COUNT_BITS) * PVS_RLE_RUN_GRANULARITY) {

 // run of zeros of (1 << (PVS_RLE_1ST_COUNT_BITS + PVS_RLE_2ND_COUNT_BITS)) *

 // PVS_RLE_RUN_GRANULARITY bits

 if (numNotVis > (1 << (PVS_RLE_1ST_COUNT_BITS + PVS_RLE_2ND_COUNT_BITS)) *

 PVS_RLE_RUN_GRANULARITY) {

 numNotVis = (1 << (PVS_RLE_1ST_COUNT_BITS + PVS_RLE_2ND_COUNT_BITS));

 } else {

 numNotVis /= PVS_RLE_RUN_GRANULARITY;

 }

 *out++ = (((numNotVis - 1) & ((1 << PVS_RLE_1ST_COUNT_BITS) - 1)) |

 (PVS_RLE_RUN_BIT | PVS_RLE_RUN_LONG_BIT));

 *out++ = (((numNotVis - 1) >> PVS_RLE_1ST_COUNT_BITS));

 } else {

 // run of zeros of (1 << PVS_RLE_1ST_COUNT_BITS) * PVS_RLE_RUN_GRANULARITY bits

 numNotVis /= PVS_RLE_RUN_GRANULARITY;

 *out++ = ((numNotVis - 1) | PVS_RLE_RUN_BIT);

 }

 index += numNotVis * PVS_RLE_RUN_GRANULARITY;

 } else {

 // immediate of PVS_RLE_IMMEDIATE_BITS bits

 int bits = 0;

 for (int j = 0; j < PVS_RLE_IMMEDIATE_BITS && index + j < numBits; j++) {

 if ((pvs[(index + j) >> 3] & (1 << ((index + j) & 7))) != 0) {

 bits |= 1 << j;

 }

 }

 *out++ = bits;

 index += PVS_RLE_IMMEDIATE_BITS;

 }

 }

 return out - compressed;

}

void DecompressPVS(byte *pvs, int numBytes, const byte *compressed) {

 memset(pvs, 0, numBytes);

 int numBits = numBytes * 8;

 for (int offset = 0, index = 0; index < numBits;) {

 int rleBits = compressed[offset++];

 if ((rleBits & PVS_RLE_RUN_BIT) != 0) {

 // short run-length code

 int run = rleBits & ((1 << PVS_RLE_1ST_COUNT_BITS) - 1);

 if ((rleBits & PVS_RLE_RUN_LONG_BIT) != 0) {

 // additional bits for long run-length code

 run |= compressed[offset++] << PVS_RLE_1ST_COUNT_BITS;

 }

 index += (run + 1) * PVS_RLE_RUN_GRANULARITY;

 } else {

 for (int i = 0; i < PVS_RLE_IMMEDIATE_BITS; i++) {

 pvs[index >> 3] |= ((rleBits >> i) & 1) << (index & 7);

 index++;

 }

 }

 }

}

This compressor can efficiently encode sequences of up to 2^(6+8) = 16384 zero bits while still

being able to store immediate values with arbitrary bit sequences directly in the compressed data.

The compressed PVS data for 10000 or more cells with an occlusion ratio of 98% or more is

some 20% to 30% smaller than the compressed data produced by the run-length encoder used in

Quake. Worst case the compressed data can be at most 1.125 times larger than the uncompressed

data when the PVS bit string contains no runs of 8 or more consecutive zero bits. The encoder is

more complex but encoding is typically done off-line. The decoder is still surprisingly simple

and typically not noticeably slower than the run-length decoder from Quake.

5. Results

The following table shows the performance of the different PVS compression algorithms for the

PVS data used for rendering and networking in the computer game Quake. The number of cells

is relatively small ranging from a couple of hundred to just over 1400. There are two cases where

the Quake PVS compression algorithm outperforms the algorithm introduced here. However, in

both cases the number of cells is very low and the difference in compressed size is less than 250

bytes. In all other cases the PVS compression algorithm introduced here performs marginally

better providing up to a 13% improvement over the PVS compression algorithm used in Quake.

name # cells
occlusion

ratio

uncompressed

(bytes)

Quake

(bytes / ratio)

New

(bytes / ratio)

percentage

smaller

dm1.bsp 449 79.8% 25,593 12,595 / 2:1 11,561 / 2:1 8%

dm2.bsp 934 91.1% 109,278 27,559 / 3:1 24,861 / 4:1 10%

dm3.bsp 598 87.5% 44,850 15,741 / 2:1 14,424 / 3:1 8%

dm4.bsp 399 80.1% 19,950 10,863 / 1:1 9,490 / 2:1 13%

dm5.bsp 478 81.7% 28,680 13,882 / 2:1 12,854 / 2:1 7%

dm6.bsp 601 76.5% 45,676 18,156 / 2:1 18,401 / 2:1 -1%

e1m1.bsp 1148 89.8% 165,312 40,843 / 4:1 39,380 / 4:1 4%

e1m2.bsp 1109 91.1% 154,151 31,713 / 4:1 30,294 / 5:1 4%

e1m3.bsp 967 90.9% 117,007 25,516 / 4:1 24,219 / 4:1 5%

e1m4.bsp 1230 91.4% 189,420 37,621 / 5:1 36,130 / 5:1 4%

e1m5.bsp 932 93.2% 109,044 21,204 / 5:1 19,623 / 5:1 7%

e1m6.bsp 648 86.0% 52,488 18,590 / 2:1 17,596 / 2:1 5%

e1m7.bsp 281 67.0% 10,116 6,042 / 1:1 6,266 / 1:1 -4%

e1m8.bsp 508 82.4% 32,512 16,259 / 1:1 14,616 / 2:1 10%

e2m1.bsp 1092 92.7% 149,604 34,723 / 4:1 31,290 / 4:1 10%

e2m2.bsp 1256 92.9% 197,192 44,302 / 4:1 39,502 / 4:1 11%

e2m3.bsp 1095 93.4% 150,015 33,401 / 4:1 29,955 / 5:1 10%

e2m4.bsp 1258 93.4% 198,764 43,076 / 4:1 38,188 / 5:1 11%

e2m5.bsp 985 91.0% 122,140 26,195 / 4:1 25,532 / 4:1 3%

e2m6.bsp 897 93.4% 101,361 22,701 / 4:1 19,968 / 5:1 12%

e2m7.bsp 1236 92.6% 191,580 34,104 / 5:1 32,737 / 5:1 4%

e3m1.bsp 1000 93.5% 125,000 30,685 / 4:1 26,715 / 4:1 13%

e3m2.bsp 522 89.7% 34,452 10,387 / 3:1 9,714 / 3:1 6%

e3m3.bsp 852 90.5% 91,164 19,692 / 4:1 18,982 / 4:1 4%

e3m4.bsp 1166 92.7% 170,236 32,555 / 5:1 31,720 / 5:1 3%

e3m5.bsp 1423 91.9% 253,294 49,973 / 5:1 47,542 / 5:1 5%

e3m6.bsp 1403 92.6% 246,928 44,170 / 5:1 42,659 / 5:1 3%

e3m7.bsp 1021 92.6% 130,688 24,903 / 5:1 23,735 / 5:1 5%

e4m1.bsp 1218 91.3% 186,354 38,730 / 4:1 36,864 / 5:1 5%

e4m2.bsp 1067 91.4% 142,978 30,978 / 4:1 28,373 / 5:1 8%

e4m3.bsp 918 92.1% 105,570 24,335 / 4:1 22,499 / 4:1 8%

e4m4.bsp 1255 91.5% 197,035 41,401 / 4:1 39,124 / 5:1 5%

e4m5.bsp 959 92.0% 115,080 22,745 / 5:1 21,615 / 5:1 5%

e4m6.bsp 804 90.1% 81,204 18,593 / 4:1 17,759 / 4:1 4%

e4m7.bsp 1436 93.6% 258,480 42,378 / 6:1 39,423 / 6:1 7%

e4m8.bsp 988 94.4% 122,512 20,899 / 5:1 19,376 / 6:1 7%

The following table shows the performance of the different PVS compression algorithms for the

PVS data used to quickly gather obstacles for dynamic obstacle avoidance in the computer game

Enemy Territory Quake Wars (ETQW). The number of cells is significantly higher than the

number of cells in the computer game Quake. One of the ETQW environments is subdivided into

over 17 thousand cells. The occlusion ratios for the PVS data in ETQW are also significantly

higher than in Quake. All occlusion ratios for the PVS data in ETQW are over 98% and the

average occlusion ratio is around 99%. The algorithm introduced here performs noticeably better

on these data sets than the PVS compression algorithm from Quake. For one of the ETQW

environments the compressed PVS data is 30% smaller when compressed with the algorithm

introduced here.

name # cells
occlusion

ratio

uncompressed

(bytes)

Quake

(bytes / ratio)

New

(bytes / ratio)

percentage

smaller

area22.aas_player 9390 99.2% 11,023,860 436,506 / 25:1 341,253 / 32:1 22%

ark.aas_player 7339 99.3% 6,737,202 259,172 / 25:1 203,973 / 33:1 21%

canyon.aas_player 10640 99.2% 14,151,200 500,412 / 28:1 384,804 / 36:1 23%

island.aas_player 8779 99.2% 9,639,342 346,037 / 27:1 266,556 / 36:1 23%

outskirts.aas_player 12203 99.4% 18,621,778 626,072 / 29:1 463,395 / 40:1 26%

quarry.aas_player 8878 98.8% 9,854,580 439,844 / 22:1 363,694 / 27:1 17%

refinery.aas_player 9564 99.4% 11,438,544 374,780 / 30:1 281,699 / 40:1 25%

salvage.aas_player 9577 99.0% 11,473,246 493,566 / 23:1 395,918 / 28:1 20%

sewer.aas_player 6089 99.1% 4,639,818 201,705 / 23:1 166,946 / 27:1 17%

slipgate.aas_player 17005 99.5% 36,152,630 948,119 / 38:1 662,510 / 54:1 30%

valley.aas_player 9348 99.2% 10,927,812 414,433 / 26:1 323,519 / 33:1 22%

volcano.aas_player 7641 98.8% 7,304,796 384,153 / 19:1 316,817 / 23:1 18%

area22.aas_vehicle 8352 99.5% 8,719,488 256,040 / 34:1 186,020 / 46:1 27%

ark.aas_vehicle 4506 99.2% 2,541,384 106,599 / 23:1 85,844 / 29:1 19%

canyon.aas_vehicle 8349 99.5% 8,716,356 259,717 / 33:1 188,431 / 46:1 27%

island.aas_vehicle 6598 99.4% 5,443,350 172,659 / 31:1 129,434 / 42:1 25%

outskirts.aas_vehicle 6045 99.3% 4,570,020 165,447 / 27:1 130,017 / 35:1 21%

quarry.aas_vehicle 5419 99.2% 3,674,082 143,090 / 25:1 114,334 / 32:1 20%

refinery.aas_vehicle 5489 99.3% 3,770,943 129,781 / 29:1 100,481 / 37:1 23%

salvage.aas_vehicle 4364 98.7% 2,382,744 126,369 / 18:1 107,168 / 22:1 15%

sewer.aas_vehicle 4432 99.3% 2,455,328 100,904 / 24:1 82,462 / 29:1 18%

slipgate.aas_vehicle 7067 99.3% 6,247,228 205,473 / 30:1 156,567 / 39:1 24%

valley.aas_vehicle 6391 99.4% 5,106,409 171,173 / 29:1 131,517 / 38:1 23%

volcano.aas_vehicle 3928 98.3% 1,928,648 119,733 / 16:1 104,155 / 18:1 13%

6. Conclusion

PVS data for no more than a couple of thousand cells can be efficiently compressed with the

lossless compression algorithm used in the computer game Quake. For a couple of hundred to a

couple of thousand cells this algorithm performs rather well considering its simplicity. PVS data

for many thousands of cells with high occlusion ratios is best compressed with the algorithm

introduced here. The encoder is more complex but encoding is typically done off-line while the

decoder is still surprisingly simple. For many thousands of cells and high occlusion ratios the

PVS compression algorithm introduced here produces 10% to 30% smaller data sets than the

PVS compression algorithm used in the computer game Quake.

7. References

1. Inside Quake: Visible-Surface Determination

Michael Abrash

Dr. Dobb's Sourcebook, January/February 1996, #255

Ramblings In Real Time, pp. 41-45

Available Online: http://www.bluesnews.com/abrash/chap64.shtml

2. Effective Compression Techniques for Precomputed Visibility

Michiel van de Panne, A. James Stewart

Eurographics Workshop on Rendering, pp. 305-316, June 1999

Available Online: http://www.cs.queensu.ca/~jstewart/papers/egwr99.html

3. Progressive Compression of Visibility Data for View-Dependent Multiresolution Meshes

Christopher Zach, Konrad Karner

The 11-th International Conference in Central Europe on Computer Graphics, Visualization

and Computer Vision'2003, WSCG 2003

Available Online: http://wscg.zcu.cz/wscg2003/Papers_2003/D47.pdf

4. Efficient Compression of Visibility Sets

Christian Bouville, Isabelle Marchal, Loic Bouget

Advances in visual computing : (First international symposium, ISVC 2005) (Lake Tahoe,

NV, USA, December 5-7, 2005) (proceedings)

Lecture Notes in Computer Science (Spinger Verlag), Vol. 3804/2005, pp 243-252

http://www.bluesnews.com/abrash/chap64.shtml
file:///Z:/TechDocs/Games/ETQW/PVSCompression/papers/EGWREX.pdf
file:///Z:/TechDocs/Games/ETQW/PVSCompression/papers/D47.pdf
file:///Z:/TechDocs/Games/ETQW/PVSCompression/papers/fulltext.pdf

