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Abstract  

An efficient algorithm is presented for lossless compression of very large 

Potentially Visible Sets with high occlusion ratios.  

1. Potential Visible Set  

A Potentially Visible Set (PVS) is a directional mapping that defines visibility between pairs of 

objects and/or locations. The mapping is directional because if B is visible to A then A is not 

necessarily visible to B. Potential Visible Sets are often based on convex hulls or areas that are 

created with a Binary Space Partitioning (BSP) algorithm. In the context of PVS data, these 

convex hulls or areas are typically referred to as cells.  

A PVS is particularly useful to speed up rendering solutions because it allows many cells or 

objects that can never be seen from a particular location to be quickly discarded [1]. Although a 

PVS is typically associated with rendering, it can also be used for other purposes. A PVS can for 

instance improve the performance of a networking solution [4] by using the PVS to determine 

which objects need to be synchronized over a network based on visibility.  

A PVS can also be used in a context where the term visibility does not necessarily refer to sight. 

A PVS can for instance be used to quickly cull objects for an obstacle avoidance solution for 

robots or artificial intelligence (AI). A building may be subdivided into rooms filled with 

dynamic obstacles, and for obstacle avoidance purposes it may be necessary to quickly gather all 

objects that need to be considered as obstacles in the current room and nearby rooms. In this 

context, nearby rooms are not necessarily visible, and also not necessarily nearby based on 

Euclidean distance. For instance, a path around obstacles may lead through rooms that are not 

visible and rooms below or above the robot or AI may be physically nearby but may not need to 

be considered for obstacle avoidance because they are out of reach. In the context of obstacle 

avoidance "visibility" typically refers to being reachable within a certain distance or time.  

PVS data is typically stored as a set of bit strings. In such a bit string the offset of a bit denotes a 

cell index. A bit set to one denotes visible, and a bit set to zero denotes not visible. To store 

directional visibility information for all pairs of cells, these bit strings are either the rows or 

columns in a visibility matrix. The rows typically store all cells visible to a cell, and the columns 
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store all the cells from which a cell is visible. Even though only one bit is stored for each 

directed pair of cells the matrix may still consume a large amount of memory if there are 

thousands of cells.  

Clusters of cells can be used to shrink the PVS data [2, 3]. Instead of storing the visibility of cells 

the visibility of groups of cells is stored. Because there are fewer clusters than cells, the amount 

of PVS data is reduced. Using clusters can be considered a lossy form of compression because 

some visibility information between individual cells may be lost. Using clusters may also come 

at a cost. Relevant PVS dependent data is often stored per cell and a mapping from cells to 

clusters and back may be required to access this data. Such a mapping consumes memory by 

itself.  

The cells can also be reordered such that longer sequences of zero bits are created that typically 

compress better. However, finding the optimal order of cells is a complex optimization problem. 

The following sections focus on algorithms for lossless compression of PVS bit strings without 

reordering the cells.  

2. Bit String Compression  

The decompression of compressed PVS data needs to be fast and simple because a PVS is 

typically used to speed up or avoid more expensive computations. In particular iterating over all 

cells visible to a cell needs to be quick and easy.  

Applying an entropy encoder like Huffman is not optimal because the PVS data is not a sequence 

of fixed bit size words. For the same reason arithmetic coding of a PVS bit string does not work 

well. When a PVS bit string is chopped up in fixed size words, the distribution is very uneven 

where there are many words with only zero bits and all non-zero words may appear at similar 

frequencies.  

PVS data consists of many zeros and long sequences of zeros but there may also be short runs of 

bits with seemingly random values. The best PVS compression ratios are typically achieved by 

using Run-Length Encoding (RLE). If the most frequent symbol is precisely known, RLE can be 

improved to encode only sequences of this symbol and leave all others uncoded. In the case of 

PVS data the obvious symbol is a single zero bit or some sequence of zero bits like a zero byte.  

3. Quake PVS Compression  

The computer game Quake used a very simple byte based RLE algorithm to compress the PVS 

bit strings used for both rendering and networking. This algorithm writes out a byte in whole to 

the compressed stream if a byte is unequal zero. If a byte is zero then first a zero byte is written 

to the compressed stream followed by a byte that represents the number of consecutive bytes also 

set to zero.  
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typedef unsigned char byte; 

 

int CompressPVS( const byte *pvs, int numBytes, byte *compressed ) { 

    byte * out = compressed; 

    for ( int i = 0; i < numBytes; i++ ) { 

        *out++ = pvs[i]; 

        if ( pvs[i] ) { 

            continue; 

        } 

        int c = 0; 

        for ( i++; i < numBytes; i++ ) { 

            if ( pvs[i] || c == 256 ) { 

                break; 

            } 

            c++; 

        } 

        *out++ = c; 

        i--; 

    } 

    return out - compressed; 

} 

 

void DecompressPVS( byte *pvs, int numBytes, const byte *compressed ) { 

    const byte * in = compressed; 

    byte * out = pvs; 

    do { 

        if ( in[0] ) { 

            *out++ = *in++; 

            continue; 

        } 

        for ( int c = in[1] + 1; c != 0; c-- ) { 

            *out++ = 0; 

        } 

        in += 2; 

    } while( out - pvs < numBytes ); 

} 

The compressed data is byte aligned which makes decompression simple and fast. Worst case the 

compressed data is 1.5 times larger than then the uncompressed data when the PVS bit string is a 

sequence of bytes with values that alternate between zero and not zero. The encoder works really 

well for shorter bit strings ( < 5000 cells) with occlusion percentage of 80% to 95%. For longer 

bit strings with sequences of more than 2048 consecutive zero bits (= 256 * 8-bits) the 

compression can be improved.  

4. Compression of Very Long PVS Bit Strings  

The following algorithm is the result of a first attempt at trying to implement an encoder that 

more efficiently deals with very long sequences of zero bits. The bit string is encoded using 

blocks of 16 bits, where the first 12 bits represent the number of consecutive zero bits and the 

next 4 bits represent the number of consecutive one bits that follow the sequence of zero bits. By 

using 12 bits to encode sequences of zero bits the encoder is more efficient when there are very 

long sequences of more than 2048 zero bits. In particular the encoder can encode sequences of 

up to 2^12 = 4096 zero bits more efficiently.  

  



#define PVS_RLE_ZERO_BITS       12 

#define PVS_RLE_ONE_BITS        4 

 

int CompressPVS( const byte *pvs, int numBytes, byte *compressed ) { 

    byte *out = compressed; 

    int numBits = numBytes * 8; 

    for ( int index = 0; index < numBits; ) { 

        int numZeros; 

        for ( numZeros = 0; index + numZeros < numBits && numZeros < ( ( 1 << PVS_RLE_ZERO_BITS ) - 1 ); numZeros++ ) { 

            if ( ( pvs[( index + numZeros ) >> 3] & ( 1 << ( ( index + numZeros ) & 7 ) ) ) != 0 ) { 

                break; 

            } 

        } 

        index += numZeros; 

        int numOnes; 

        for ( numOnes = 0; index + numOnes < numBits && numOnes < ( ( 1 << PVS_RLE_ONE_BITS ) - 1 ); numOnes++ ) { 

            if ( ( pvs[( index + numOnes ) >> 3] & ( 1 << ( ( index + numOnes ) & 7 ) ) ) == 0 ) { 

                break; 

            } 

        } 

        index += numOnes; 

        int rleBits = numZeros | ( numOnes << PVS_RLE_ZERO_BITS ); 

        *out++ = rleBits & 255; 

        *out++ = rleBits >> 8; 

    } 

    return out - compressed; 

} 

 

void DecompressPVS( byte *pvs, int numBytes, const byte *compressed ) { 

    memset( pvs, 0, numBytes ); 

    int numBits = numBytes * 8; 

    for ( int offset = 0, index = 0; index < numBits; ) { 

        int rleBits = compressed[offset++] | ( compressed[offset++] << 8 ); 

        int numZeros = rleBits & ( ( 1 << PVS_RLE_ZERO_BITS ) - 1 ); 

        index += numZeros; 

        int numOnes = rleBits >> PVS_RLE_ZERO_BITS; 

        for ( int i = 0; i < numOnes; i++ ) { 

            pvs[index >> 3] |= 1 << ( index & 7 ); 

            index++; 

        } 

    } 

} 

This encoder sometimes works better than the Quake encoder but quite often also worse than the 

Quake encoder. In particular the compression does not work well if there are sequences of 

alternating bits. The encoder works better if there are very long sequences of consecutive zero 

bits of more than 2048 bits. This compressor shows that it is important to be able to efficiently 

encode bit sequences of consecutive zeros that are longer than 2048 bits (otherwise this 

compressor would never outperform the Quake compressor). However, it is also important to be 

able to store immediate values with alternating bit sequences directly from the PVS bit string.  

The compressor shown below still produces byte aligned data which allows for simple and fast 

decompression. However, the following compressor not only allows longer sequences of zero 

bits to be encoded but also allows immediate values to be placed directly into the compressed 

data. 

The following algorithm compresses PVS bit strings such that if the first bit of a byte of 

compressed data is set to zero the next 7 bits contain an immediate value with actual PVS bits. If 

the first bit is set to one the next 7 bits and possibly the next byte of the compressed data store a 

run of zeros. If the first bit is set to one and the second bit is set to zero then the next 6 bits store 

the number of consecutive bits set to zero. If the first bit and the second bit are both set to one 

then the next 6 bits plus the next 8 bits of compressed data store the number of consecutive bits 

set to zero.  



#define PVS_RLE_IMMEDIATE_BITS     7   // number of bits available to encode an immediate 

#define PVS_RLE_1ST_COUNT_BITS     6   // default number of bits to encode a run of zeros 

#define PVS_RLE_2ND_COUNT_BITS     8   // one additional byte to encode a run of zeros 

#define PVS_RLE_RUN_GRANULARITY    1   // can be set to a higher value if runs of more 

                                       // than 16384 zeros are common 

#define PVS_RLE_RUN_BIT            (1 << 7) 

#define PVS_RLE_RUN_LONG_BIT       (1 << 6) 

 

int CompressPVS( const byte *pvs, int numBytes, byte *compressed ) { 

    byte *out = compressed; 

    int numBits = numBytes * 8; 

    for ( int index = 0; index < numBits; ) { 

        int numNotVis; 

        for ( numNotVis = 0; index + numNotVis < numBits; numNotVis++ ) { 

            if ( ( pvs[( index + numNotVis ) >> 3] & 

                                 ( 1 << ( ( index + numNotVis ) & 7 ) ) ) != 0 ) { 

                break; 

            } 

        } 

        if ( numNotVis >= PVS_RLE_IMMEDIATE_BITS ) { 

            if ( numNotVis > ( 1 << PVS_RLE_1ST_COUNT_BITS ) * PVS_RLE_RUN_GRANULARITY ) { 

                // run of zeros of ( 1 << ( PVS_RLE_1ST_COUNT_BITS + PVS_RLE_2ND_COUNT_BITS ) ) * 

                // PVS_RLE_RUN_GRANULARITY bits 

                if ( numNotVis > ( 1 << ( PVS_RLE_1ST_COUNT_BITS + PVS_RLE_2ND_COUNT_BITS ) ) * 

                                 PVS_RLE_RUN_GRANULARITY ) { 

                    numNotVis = ( 1 << ( PVS_RLE_1ST_COUNT_BITS + PVS_RLE_2ND_COUNT_BITS ) ); 

                } else { 

                    numNotVis /= PVS_RLE_RUN_GRANULARITY; 

                } 

                *out++ = ( ( ( numNotVis - 1 ) & ( ( 1 << PVS_RLE_1ST_COUNT_BITS ) - 1 ) ) | 

                                 ( PVS_RLE_RUN_BIT | PVS_RLE_RUN_LONG_BIT ) ); 

                *out++ = ( ( ( numNotVis - 1 ) >> PVS_RLE_1ST_COUNT_BITS ) ); 

            } else { 

                // run of zeros of ( 1 << PVS_RLE_1ST_COUNT_BITS ) * PVS_RLE_RUN_GRANULARITY bits 

                numNotVis /= PVS_RLE_RUN_GRANULARITY; 

                *out++ = ( ( numNotVis - 1 ) | PVS_RLE_RUN_BIT ); 

            } 

            index += numNotVis * PVS_RLE_RUN_GRANULARITY; 

        } else { 

            // immediate of PVS_RLE_IMMEDIATE_BITS bits 

            int bits = 0; 

            for ( int j = 0; j < PVS_RLE_IMMEDIATE_BITS && index + j < numBits; j++ ) { 

                if ( ( pvs[( index + j ) >> 3] & ( 1 << ( ( index + j ) & 7 ) ) ) != 0 ) { 

                    bits |= 1 << j; 

                } 

            } 

            *out++ = bits; 

            index += PVS_RLE_IMMEDIATE_BITS; 

        } 

    } 

    return out - compressed; 

} 

  



void DecompressPVS( byte *pvs, int numBytes, const byte *compressed ) { 

    memset( pvs, 0, numBytes ); 

    int numBits = numBytes * 8; 

    for ( int offset = 0, index = 0; index < numBits; ) { 

        int rleBits = compressed[offset++]; 

 

        if ( ( rleBits & PVS_RLE_RUN_BIT ) != 0 ) { 

 

            // short run-length code 

            int run = rleBits & ( ( 1 << PVS_RLE_1ST_COUNT_BITS ) - 1 ); 

 

            if ( ( rleBits & PVS_RLE_RUN_LONG_BIT ) != 0 ) { 

                // additional bits for long run-length code 

                run |= compressed[offset++] << PVS_RLE_1ST_COUNT_BITS; 

            } 

 

            index += ( run + 1 ) * PVS_RLE_RUN_GRANULARITY; 

 

        } else { 

 

            for ( int i = 0; i < PVS_RLE_IMMEDIATE_BITS; i++ ) { 

                pvs[index >> 3] |= ( ( rleBits >> i ) & 1 ) << ( index & 7 ); 

                index++; 

            } 

        } 

    } 

} 

This compressor can efficiently encode sequences of up to 2^(6+8) = 16384 zero bits while still 

being able to store immediate values with arbitrary bit sequences directly in the compressed data. 

The compressed PVS data for 10000 or more cells with an occlusion ratio of 98% or more is 

some 20% to 30% smaller than the compressed data produced by the run-length encoder used in 

Quake. Worst case the compressed data can be at most 1.125 times larger than the uncompressed 

data when the PVS bit string contains no runs of 8 or more consecutive zero bits. The encoder is 

more complex but encoding is typically done off-line. The decoder is still surprisingly simple 

and typically not noticeably slower than the run-length decoder from Quake.  

 

5. Results  

The following table shows the performance of the different PVS compression algorithms for the 

PVS data used for rendering and networking in the computer game Quake. The number of cells 

is relatively small ranging from a couple of hundred to just over 1400. There are two cases where 

the Quake PVS compression algorithm outperforms the algorithm introduced here. However, in 

both cases the number of cells is very low and the difference in compressed size is less than 250 

bytes. In all other cases the PVS compression algorithm introduced here performs marginally 

better providing up to a 13% improvement over the PVS compression algorithm used in Quake. 

  



 

name # cells 
occlusion 

ratio 

uncompressed 

(bytes) 

Quake 

(bytes / ratio) 

New 

(bytes / ratio) 

percentage 

smaller 

dm1.bsp  449  79.8%  25,593  12,595 / 2:1 11,561 / 2:1 8% 

dm2.bsp  934  91.1%  109,278  27,559 / 3:1 24,861 / 4:1 10% 

dm3.bsp  598  87.5%  44,850  15,741 / 2:1 14,424 / 3:1 8% 

dm4.bsp  399  80.1%  19,950  10,863 / 1:1 9,490 / 2:1 13% 

dm5.bsp  478  81.7%  28,680  13,882 / 2:1 12,854 / 2:1 7% 

dm6.bsp  601  76.5%  45,676  18,156 / 2:1 18,401 / 2:1 -1% 

e1m1.bsp  1148  89.8%  165,312  40,843 / 4:1 39,380 / 4:1 4% 

e1m2.bsp  1109  91.1%  154,151  31,713 / 4:1 30,294 / 5:1 4% 

e1m3.bsp  967  90.9%  117,007  25,516 / 4:1 24,219 / 4:1 5% 

e1m4.bsp  1230  91.4%  189,420  37,621 / 5:1 36,130 / 5:1 4% 

e1m5.bsp  932  93.2%  109,044  21,204 / 5:1 19,623 / 5:1 7% 

e1m6.bsp  648  86.0%  52,488  18,590 / 2:1 17,596 / 2:1 5% 

e1m7.bsp  281  67.0%  10,116  6,042 / 1:1 6,266 / 1:1 -4% 

e1m8.bsp  508  82.4%  32,512  16,259 / 1:1 14,616 / 2:1 10% 

e2m1.bsp  1092  92.7%  149,604  34,723 / 4:1 31,290 / 4:1 10% 

e2m2.bsp  1256  92.9%  197,192  44,302 / 4:1 39,502 / 4:1 11% 

e2m3.bsp  1095  93.4%  150,015  33,401 / 4:1 29,955 / 5:1 10% 

e2m4.bsp  1258  93.4%  198,764  43,076 / 4:1 38,188 / 5:1 11% 

e2m5.bsp  985  91.0%  122,140  26,195 / 4:1 25,532 / 4:1 3% 

e2m6.bsp  897  93.4%  101,361  22,701 / 4:1 19,968 / 5:1 12% 

e2m7.bsp  1236  92.6%  191,580  34,104 / 5:1 32,737 / 5:1 4% 

e3m1.bsp  1000  93.5%  125,000  30,685 / 4:1 26,715 / 4:1 13% 

e3m2.bsp  522  89.7%  34,452  10,387 / 3:1 9,714 / 3:1 6% 

e3m3.bsp  852  90.5%  91,164  19,692 / 4:1 18,982 / 4:1 4% 

e3m4.bsp  1166  92.7%  170,236  32,555 / 5:1 31,720 / 5:1 3% 

e3m5.bsp  1423  91.9%  253,294  49,973 / 5:1 47,542 / 5:1 5% 

e3m6.bsp  1403  92.6%  246,928  44,170 / 5:1 42,659 / 5:1 3% 

e3m7.bsp  1021  92.6%  130,688  24,903 / 5:1 23,735 / 5:1 5% 

e4m1.bsp  1218  91.3%  186,354  38,730 / 4:1 36,864 / 5:1 5% 

e4m2.bsp  1067  91.4%  142,978  30,978 / 4:1 28,373 / 5:1 8% 

e4m3.bsp  918  92.1%  105,570  24,335 / 4:1 22,499 / 4:1 8% 

e4m4.bsp  1255  91.5%  197,035  41,401 / 4:1 39,124 / 5:1 5% 

e4m5.bsp  959  92.0%  115,080  22,745 / 5:1 21,615 / 5:1 5% 

e4m6.bsp  804  90.1%  81,204  18,593 / 4:1 17,759 / 4:1 4% 

e4m7.bsp  1436  93.6%  258,480  42,378 / 6:1 39,423 / 6:1 7% 

e4m8.bsp  988  94.4%  122,512  20,899 / 5:1 19,376 / 6:1 7% 

The following table shows the performance of the different PVS compression algorithms for the 

PVS data used to quickly gather obstacles for dynamic obstacle avoidance in the computer game 

Enemy Territory Quake Wars (ETQW). The number of cells is significantly higher than the 

number of cells in the computer game Quake. One of the ETQW environments is subdivided into 

over 17 thousand cells. The occlusion ratios for the PVS data in ETQW are also significantly 



higher than in Quake. All occlusion ratios for the PVS data in ETQW are over 98% and the 

average occlusion ratio is around 99%. The algorithm introduced here performs noticeably better 

on these data sets than the PVS compression algorithm from Quake. For one of the ETQW 

environments the compressed PVS data is 30% smaller when compressed with the algorithm 

introduced here.  

name # cells 
occlusion 

ratio 

uncompressed 

(bytes) 

Quake 

(bytes / ratio) 

New 

(bytes / ratio) 

percentage 

smaller 

area22.aas_player 9390  99.2%  11,023,860  436,506 / 25:1 341,253 / 32:1 22% 

ark.aas_player 7339  99.3%  6,737,202  259,172 / 25:1 203,973 / 33:1 21% 

canyon.aas_player 10640  99.2%  14,151,200  500,412 / 28:1 384,804 / 36:1 23% 

island.aas_player 8779  99.2%  9,639,342  346,037 / 27:1 266,556 / 36:1 23% 

outskirts.aas_player 12203  99.4%  18,621,778  626,072 / 29:1 463,395 / 40:1 26% 

quarry.aas_player 8878  98.8%  9,854,580  439,844 / 22:1 363,694 / 27:1 17% 

refinery.aas_player 9564  99.4%  11,438,544  374,780 / 30:1 281,699 / 40:1 25% 

salvage.aas_player 9577  99.0%  11,473,246  493,566 / 23:1 395,918 / 28:1 20% 

sewer.aas_player 6089  99.1%  4,639,818  201,705 / 23:1 166,946 / 27:1 17% 

slipgate.aas_player 17005  99.5%  36,152,630  948,119 / 38:1 662,510 / 54:1 30% 

valley.aas_player 9348  99.2%  10,927,812  414,433 / 26:1 323,519 / 33:1 22% 

volcano.aas_player 7641  98.8%  7,304,796  384,153 / 19:1 316,817 / 23:1 18% 

area22.aas_vehicle 8352  99.5%  8,719,488  256,040 / 34:1 186,020 / 46:1 27% 

ark.aas_vehicle 4506  99.2%  2,541,384  106,599 / 23:1 85,844 / 29:1 19% 

canyon.aas_vehicle 8349  99.5%  8,716,356  259,717 / 33:1 188,431 / 46:1 27% 

island.aas_vehicle 6598  99.4%  5,443,350  172,659 / 31:1 129,434 / 42:1 25% 

outskirts.aas_vehicle 6045  99.3%  4,570,020  165,447 / 27:1 130,017 / 35:1 21% 

quarry.aas_vehicle 5419  99.2%  3,674,082  143,090 / 25:1 114,334 / 32:1 20% 

refinery.aas_vehicle 5489  99.3%  3,770,943  129,781 / 29:1 100,481 / 37:1 23% 

salvage.aas_vehicle 4364  98.7%  2,382,744  126,369 / 18:1 107,168 / 22:1 15% 

sewer.aas_vehicle 4432  99.3%  2,455,328  100,904 / 24:1 82,462 / 29:1 18% 

slipgate.aas_vehicle 7067  99.3%  6,247,228  205,473 / 30:1 156,567 / 39:1 24% 

valley.aas_vehicle 6391  99.4%  5,106,409  171,173 / 29:1 131,517 / 38:1 23% 

volcano.aas_vehicle 3928  98.3%  1,928,648  119,733 / 16:1 104,155 / 18:1 13% 

 

  



6. Conclusion  

PVS data for no more than a couple of thousand cells can be efficiently compressed with the 

lossless compression algorithm used in the computer game Quake. For a couple of hundred to a 

couple of thousand cells this algorithm performs rather well considering its simplicity. PVS data 

for many thousands of cells with high occlusion ratios is best compressed with the algorithm 

introduced here. The encoder is more complex but encoding is typically done off-line while the 

decoder is still surprisingly simple. For many thousands of cells and high occlusion ratios the 

PVS compression algorithm introduced here produces 10% to 30% smaller data sets than the 

PVS compression algorithm used in the computer game Quake.  
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