
Grid Computing for Artificial Intelligence

J.M.P. van Waveren

May 25th 2007

© 2007, Id Software, Inc.

Abstract

To show intelligent behavior in a First Person Shooter (FPS) game an

Artificial Intelligence (AI) controlled character needs spatial and temporal

awareness of the environment. Real-time environment sampling to acquire

this awareness during game-play is particularly expensive in today's high

detail games. Furthermore, on single CPU/core systems, that are still very

common in the PC gaming landscape, there is only a small percentage of

CPU time allocated for AI. As such, pre-calculated data structures need to be

used as much as possible to allow the AI to quickly analyze the environment

and make intelligent decisions. Id's new title, Enemy Territory QUAKE Wars

is powered by the revolutionary id Tech 4 game engine which has a system in

place that allows the artificial players (a.k.a. bots) to quickly acquire the

spatial and temporal awareness needed in order to perform well in the game.

During the pre-calculation phase of this system, a boundary representation

(b-rep) of configuration space (C-Space) is calculated in the form of one or

more two-manifold triangle meshes. This is a complex and time consuming

process where geometric operations are performed on millions of triangles.

To significantly speed up this process the work is divided into many

independent smaller chunks which allows maximum parallelism to be

exploited through the Xoreax Grid Engine (XGE) of IncrediBuild's

distributed build technology. Pre-calculation for AI in computer games is an

area where the XGE is very effective in bringing down compilation times and

as such in reducing the turn-around time during development.

1. Pre-calculation for AI

Both spatial and temporal awareness are key to performing well in an FPS game. The human

brain is very good at recognition and prediction and human players take advantage of these skills

to quickly become aware of the environment in an FPS game. After playing an FPS game a few

times people easily recognize where they are in the environment and quickly anticipate what is

going to happen, which allows them to make decisions on where to go and what they need to do.

At any given time an Artificial Intelligence (AI) controlled character for an FPS game also needs

to be able to quickly acquire the spatial and temporal awareness required to make an intelligent

decision on where to go and what needs to be done.

Even though multi-core systems are rapidly

taking over the PC gaming landscape there

are still a large number of single CPU/core

systems out there. On these systems the

amount of CPU time allocated for AI is quite

often still no more than 10 percent. At the

same time the game environments are

becoming much more complex and dynamic.

The polygonal complexity of the

environments has increased significantly over

the years and in today's games there are many

more dynamic objects that are moving

through the environment with the use of

sophisticated real-time physics simulations.

In order to deal with this increased complexity while using as little CPU as possible, it is key to

pre-calculate anything for the AI that can be pre-calculated. Everything that doesn't change and

is static in the environment needs to be considered for pre-calculation to produce data structures

that make it easier for the AI controlled characters to quickly understand their position and

situation in the environment. Furthermore it is important to pre-calculate data structures that will

make dealing with dynamic objects faster in real-time.

The "pre-calculated" data for the AI can be added to a game either programmatically or by hand.

Certain hints for the AI are seemingly easily placed in a level by a level designer, like for

instance waypoints, paths, camp spots, cover locations, etc. However, placing optimal waypoints

and creating good paths such that the AI can easily reach all locations in a level is a non-trivial

task. Furthermore as strategies become more complex so do the hints that need to be placed in a

level. A level designer typically needs to manually place a large number of hints to cover the

whole environment. Before placing hints, a level designer needs to be educated in placing these

hints which takes time. A level designer can also make mistakes, especially when the hints that

need to be placed are complex and/or optimal placement is not well defined. Manually placed

waypoints, paths and hints require continuous testing to catch any mistakes and to generally

make sure the AI is able to use the hints as intended.

An algorithmic solution to provide the AI with the information it needs may initially have

problems due to bugs in the implementation. However, when a bug is fixed it usually does not

file:///Z:/TechDocs/Games/ETQW/XGE/images/etqw_tank_hill.jpg

come back, whereas with a manual solution human error can be introduced at any time during

development. An algorithmic solution results in scalability, repeatability and consistency.

Furthermore scaling is much cheaper. Hiring, educating and employing another level designer is

expensive. An algorithmic solution may initially require some programmer time but is in the end

much cheaper in that more levels can be compiled in a shorter period of time by simply using

more computing power.

2. Area Awareness System

The bots in Enemy Territory QUAKE Wars (ETQW) use an Area Awareness System (AAS) to

understand, navigate and quickly become aware of the environment. This area system is

automatically derived from the level geometry during an off-line compilation process. The first

step of the AAS compilation process involves the construction of a boundary representation (b-

rep) of configuration space (C-Space). The b-rep of C-Space consists of one or more two-

manifold meshes that describe the Minkowsky sum of the world geometry and the bounding

volume in which a bot (or player) resides. In the next step the AAS compiler identifies walkable

surfaces on the b-rep of C-Space. The walkable surfaces are subdivided into the least number of

walkable areas, such that a bot or player can move in a straight line between any two points in an

area. This requires a considerable amount of filtering in order to ignore small details that should

not be considered obstacles for player navigation. Next so called "reachabilities" are calculated

that specify how a bot can navigate from one area to another.

The AAS implements a hierarchical routing

system to find routes through the

environment in real-time. This system

includes a cache manager to cache routes and

as such avoid frequent recalculations of

routes. The hierarchical nature of the routing

system makes calculating routes very fast and

minimizes cache sizes. Once a route has been

calculated a path optimizer is used to plot

straight and curved paths through the

environment along a route. The path

optimizer traces along the floor to test

whether or not an AI can walk to a certain

point or walk in a certain direction. These

floor traces are very fast because the AAS filters out all the small details that are not obstacles

for player navigation but would be returned by a regular collision detection query. Once the

optimized path has been calculated a system is used to calculate paths around arbitrary complex

configurations of dynamic obstacles. This system modifies the optimized path if there are

dynamic obstacles in the way. While calculating a new path the obstacle avoidance system also

takes the static boundaries of the environment into account to keep the AI from running into

static world geometry. The AAS is setup to quickly provide all local world boundaries, like walls

and ledges, that need to be taken into account while avoiding obstacles.

file:///Z:/TechDocs/Games/ETQW/XGE/images/etqw_flying_escort.jpg

One of the most basic and fundamental things an AI needs to be able to do is to become aware of

its current location in the environment and understand the immediate surroundings. Many other

systems for AI use spatio-temporal coherence where the understanding of the current location of

the AI is derived from a previously known location. However, in a highly dynamic game

environment events may happen that cannot always be anticipated and the AI may end up in a

location far away from any previously known location. For instance the AI may have been

walking close to a ledge and got pushed off, an explosion could have sent the AI flying, or the AI

got dragged along by a vehicle, etc. Becoming aware of the current location in the environment

(for instance by finding a nearest waypoint) through regular environment sampling without

knowing a previous location is exceedingly expensive in today's high detail game environments.

The AAS allows an AI to become aware of its current location in the world at any time, with the

calculation of just 10 to 20 dot products, without having to cache a previously known location.

When the AI is aware of its current location the system immediately provides a lot of the

information the AI needs to make an intelligent decision on where to go and what needs to be

done. The system then allows the AI to quickly perform additional queries to gather any

additional information it needs, like routes, paths, travel times and other properties of the

environment.

3. Grid Computing

The construction of the b-rep of C-Space is by far the most expensive step in the AAS

compilation process. For several reasons the AAS compiler is setup to divide the work involved

in calculating the b-rep of C-Space into many independent smaller chunks. The math involved in

geometry processing is not very complex. However, it is typically hard to anticipate all the

different situations an algorithm for geometry processing needs to cover. Even when an

algorithm covers all cases and works flawlessly in theory, the algorithm may not produce the

desired results due to floating point rounding. Implementations of algorithms for geometry

processing typically involve many lines of code to handle and deal with floating point rounding.

To generally avoid a lot of floating point rounding errors and to make the handling of rounding

errors easier, it is useful to process geometry in smaller chunks centered around the origin using

a well defined range of floating point values. When the work is divided into smaller chunks it is

also easier to analyze and debug problems during the development of the algorithm. The small

chunks can be recalculated quickly and problems are localized and can be analyzed in isolation

from the rest of the geometry.

Since the work is already divided into many

independent smaller chunks, the construction

of the b-rep of C-Space can easily be sped up

by using a grid computing solution. The

Xoreax Grid Engine (XGE) of IncrediBuild's

distributed build technology is invaluable for

grid computing solutions in that it involves

minimal integration time and is very easy to

use. The XGE virtualizes the file system and

automatically distributes the work including

the executables required to perform the work.

In other words the level geometry can be

modified locally and the executables can be

recompiled locally without having to

manually redistribute the work and executables to many computers. To get the best performance

through the XGE, an executable is required that is lean, mean and loads very fast. Fortunately it

is easy to split off only the absolutely necessary source code for the task at hand into a Win32

console application. There are three interfaces for queing XGE tasks, one of which is an XML

interface. A simple XML file is created that lists the work and the executable to be used to

process the work. The XGE xgConsole.exe command line application can then be spawned as a

piped process such that the console output can be redirected to the game application or level

editor.

4. Results

Several different approaches to exploit parallelism for the construction of the b-rep of C-Space

have been implemented and tested. The algorithm is typically first implemented in a single

threaded application. A natural progression is to use multiple threads. Instead of using multiple

threads it is also an option to spawn multiple processes where each process does part of the work.

This is very similar to what the XGE does except that only a single computer is used. The next

option is obviously to use the XGE and distribute the work across many computers.

file:///Z:/TechDocs/Games/ETQW/XGE/images/etqw_cyclops_surrender.jpg

Several of the ETQW levels have been compiled using these four approaches and the compile

times have been measured. Some statistics of the levels that were used are listed below. For each

level the number of triangles used for player collision detection is listed. Furthermore the number

of chunks with geometry is listed, where each chunk is stored in a separate file. Next the total

size of all chunk files on disk is listed, and the number of triangles used to describe the b-rep of

C-Space is listed as well.

Level Statistics

 Level # triangles

 # chunks

 total size

 # C-Space triangles

 Sewer

112288

2768

3.56 MB

156328

 Valley

120133

4241

4.13 MB

167638

 Volcano

217553

2301

4.91 MB

237680

The charts below show the compile times for the levels using the different approaches. The

Single Thread approach uses one core on a system with two Intel 2.8 GHz Dual-Core Xeon

CPUs ("Paxville" 90nm NetBurst micro-architecture with HyperThreading disabled). The

Multiple Threads approach uses four threads where each thread consumes one of the four cores

on the same system. The Multiple Processes approach uses four processes where each process

consumes one of the four cores also on the same system. The Xoreax Grid Engine approach uses

a network of 14 computers for a total 78.6 GHz in 27 cores of which 9 cores are based on the

Intel NetBurst micro-architecture and 18 cores are based on the Intel Core 2 micro-architecture.

The computers all participate in a 1 Gb network, and as such there is minimal networking

overhead because of the high speed networking infrastructure and the small file sizes.

Sewer

Single Thread

Multiple Threads

Multiple Processes

Xoreax Grid Engine

hours : minutes : seconds

Valley

Single Thread

Multiple Threads

Multiple Processes

Xoreax Grid Engine

hours : minutes : seconds

Volcano

Single Thread

Multiple Threads

Multiple Processes

Xoreax Grid Engine

hours : minutes : seconds

Even though there is some overhead involved in starting a new process, using multiple processes

is faster than multi-threading. The threads do not use their own separate memory pool and as

such there is memory contention. This bogs down the multi-threading solution, while each

process in the multiple processes solution has its own address space. The XGE solution scales

pretty much linearly with the number of CPUs/cores that are available. In the above examples the

XGE even scales beyond linearly with the available GHz compared to single threaded, because

the cores based on the Core 2 architecture are faster than the Paxville cores.

5. Going Forward

As the available CPU power increases rapidly while memory and IO bandwidth do not increase

at the same rate compression is becoming more important. More and more CPU power will be

used to decrease storage and bandwidth requirements. From a grid computing standpoint

asymmetric compression is particularly interesting, where real-time decompression during

gameplay is really fast, while off-line compression may be very computationally expensive to get

the best possible quality at the highest compression ratio. Grid computing lends itself very well

to this kind of off-line compression. The XGE is particularly useful for sound compression and

texture compression. There are typically many sounds and textures and in the case of large

sounds and large textures they can be subdivided into many smaller chunks to allow massive

parallelism to be exploited through the XGE.

id - defined by Freud as the primal section of the human psyche; id Software,

located in Mesquite, Texas, was founded in 1991. From inception to present

day, id Software has relentlessly provided technical, design and artistic

leadership as an independent game developer and technology provider.

Transcending the games industry, id's iconic brands such as Wolfenstein,

DOOM, QUAKE and Enemy Territory have become staples of popular

culture for generations of gamers. More information on id Software can be

found at www.idsoftware.com.

http://www.enemyterritory.com/
http://www.idsoftware.com/

