
Real-Time Texture Streaming &
Decompression

November 11th 2006
J.M.P. van Waveren

© 2006, Id Software, Inc.

Abstract

In this article several different lossy compression formats and
streaming solutions are evaluated for rendering textures from very

large texture databases. Furthermore a compression format similar to
JPEG and an SIMD optimized threaded pipeline is introduced to

achieve high speed streaming of textures.

1. Introduction
Textures are digitized images drawn onto geometric shapes to add visual detail. In today's
computer graphics a tremendous amount of detail is mapped onto geometric shapes
during rasterization. Especially uniquely textured environments require huge amounts of
texture data. Not only textures with colors are used but also textures specifying surface
properties like specular reflection or fine surface details in the form of normal or bump
maps. All these textures can consume large amounts of storage space and bandwidth.
Fortunately compression can be used to reduce the storage and bandwidth requirements.

There are compressed texture formats like DXT or S3TC that can be decompressed in
hardware during rasterization on current graphics cards. However, these formats are
optimized for decompression in hardware and as such typically do not result in the best
possible compression ratios. Graphics applications may use vast amounts of texture data
that is not displayed all at once but streamed from disk as the view point moves or the
rendered scene changes. Strong compression may be required to deal with such vast
amounts of texture data to keep storage and bandwidth requirements within acceptable
limits. As these textures are streamed from disk they have to be decompressed on the fly
before they can be used for rendering on current graphics cards.

There are several formats like GIF, PNG and JPEG-LS for lossless compression of
images. Lossless (reversible) image compression techniques preserve the information so
that exact reconstruction of the image is possible from the compressed data. In other
words there is no loss in quality when an image is compressed to one of these formats.
However, these compression formats typically also do not result in compression ratios
that are high enough to store vast amounts of texture data.

In this article several different lossy compression formats and streaming solutions are
evaluated for rendering textures from very large texture databases. Furthermore a
compression format similar to JPEG and an SIMD optimized threaded pipeline is
introduced to achieve high speed streaming of textures.

2. Lossy Color Image Compression Formats
There are several standardized compression formats available for lossy compression of
color images. Some well known standards are JPEG, JPEG 2000 and HD Photo.

2.1 JPEG

JPEG [1] is a lossy compression format which allows for a wide range of compression
ratios at the cost of quality. Compression ratios well beyond 20:1 are possible but there
may be a noticeable loss in quality. In particular JPEG compression may produce
significant blocking artifacts at higher compression ratios. However, at a 10:1
compression ratio an image can usually not be distinguished by eye from the original.

The name JPEG stands for Joint Photographic Experts Group, the name of the joint
ISO/CCITT committee which created the standard. JPEG was designed specifically to
discard information that the human eye cannot easily see. Slight changes in color are
generally not noticeable, while the human eye is much more sensitive to slight changes in
intensity (light and dark). Furthermore high frequency changes are usually less noticeable
to the human eye than low frequency changes.

A JPEG compressor first transforms the color data from the RGB color space to an
appropriate color space to separate the intensity (luma) from the color information
(chroma). JPEG uses the YCbCr color space which is the same as the color space used by
PAL, MAC and Digital color television transmission. The Y component represents the
luma of a pixel and the components Cb and Cr represent the blue and red chroma
respectively. Chroma subsampling is often used to improve the compression ratio with
little loss in quality because the human eye is less sensitive to high frequency chroma
changes. Typical sampling ratios are 4:4:4 (no downsampling), 4:2:2 (reduce by factor of
2 in horizontal direction), and most commonly 4:2:0 (reduce by factor of 2 in horizontal
and vertical directions).

4:4:4
4 4 4

Y Cb Cr

4:2:2
4 2:2 2:2

Y Cb Cr

4:2:0
4 2:0 2:0

Y Cb Cr
= pixel = sample

The images below show the 256x256 "Lena" image converted to YCbCr with a 4:2:0
sub-sampling ratio.

4:2:0 blue chroma (Cb)
drawn to an image.

Original 256 x 256 "Lena" image.

4:2:0 luma (Y) drawn to an image.

4:2:0 red chroma (Cr)
drawn to an image.

Each of the three channels, luma (Y), red chroma (Cr) and blue chroma (Cb), is processed
individually. A Discrete Cosine Transform (DCT) is used on each 8x8 block of data from
one of the channels to transform the spatial image data into a frequency map. The
frequencies represent the average value and successively higher-frequency changes
within a block. The images below show the frequency data for the "Lena" image after
conversion to YCbCr with a 4:2:0 sub-sampling ratio.

4:2:0 blue chroma (Cb)
frequencies drawn to an
image.

Original 256 x 256 "Lena" image.

4:2:0 luma (Y) frequencies drawn to an image.

4:2:0 red chroma (Cr)
frequencies drawn to an
image.

The frequency data is then quantized to remove image information that is less noticeable
to the human eye. Typically high frequency data is diminished while low frequency data
is maintained. A lot of the high frequency color data can usually be removed before it
becomes noticeable to the human eye.

The quantized frequencies are then rearranged to zig-zag order to maximize the length of
runs of zeros. The least visible coefficients, the ones most likely to be zero-ed, are
grouped at the end of the sequence. The rearranged and quantized frequencies are
compressed with an entropy encoder. Typically a simple Huffman encoder combined
with run-length compression is used for this purpose. The JPEG standard also allows the
use of Arithmetic coding which is mathematically superior to Huffman coding. However,
Arithmetic coding is rarely used as it is much slower to encode and decode compared to
Huffman coding.

2.2 JPEG 2000

JPEG 2000 [3, 4] is a Discrete Wavelet Transform (DWT) based image compression
standard created by the Joint Photographic Experts Group committee with the intention of
superseding the Discrete Cosine Transform (DCT) based JPEG standard. JPEG 2000 has
superior compression performance in comparison to the JPEG standard. The compression
gains over JPEG are attributed to the use of the DWT and a more sophisticated entropy
encoding scheme.

A JPEG 2000 compressor first splits the image into tiles, rectangular regions of the image
that are transformed and encoded separately. The purpose of these tiles is to cope with
memory limitations. The compressor then transforms the color data in the tiles from the
RGB color space to the YCbCr color space or uses a Reversible Component Transform
(RCT) leading to three components. These components are then wavelet transformed
individually to an arbitrary depth.

The result of the wavelet transform is a collection of subbands that represent several
approximation scales. A subband is a set of real coefficients that represent aspects of the
image associated with a certain frequency range as well as a spatial area of the image.
These coefficients are subjected to uniform scalar quantization, giving a set of integer
numbers. These quantized subbands are split further into precincts which are regular non-
overlapping rectangular regions in the wavelet domain. Precincts are split further into
code-blocks. Except those located at the edges of the image, code-blocks are located in a
single subband and have equal sizes.

The encoder has to encode the bits of all quantized coefficients of a code-block, starting
with the most significant bits and progressing to less significant bits by a process called
the Embedded Block Coding with Optimal Truncation (EBCOT). In this encoding
process, each bit-plane of the code-block gets encoded in three so called coding passes,
first encoding bits of insignificant coefficients with significant neighbors, then refinement
bits of significant coefficients and finally bits of coefficients without significant
neighbors. The three passes are called significance propagation, magnitude refinement

and cleanup pass, respectively. The bits selected by these coding passes then get encoded
by a context-driven binary arithmetic coder. The context of a coefficient is formed by the
state of its nine neighbors in the codeblock. The result is a bit-stream that is split into
packets where a packet groups selected passes of all code-blocks from a precinct into one
indivisible unit. Packets are the key to scalability where packets containing less
significant bits can be discarded to achieve lower bit-rates at the cost of quality.

Although JPEG 2000 produces superior quality compared to JPEG, the gains are modest
at medium compression ratios (10:1). The improvement is typically much larger at higher
compression ratios [5] but there may also be a noticeable loss in quality. JPEG 2000
eliminates some of the compression artifacts introduced by JPEG at higher compression
ratios, such as blocking artifacts. However, JPEG 2000 can introduce quite prominent
blurring and ringing artifacts. Furthermore JPEG 2000 decompression is significantly
more computationally expensive than JPEG decompression and requires more memory
during decoding.

2.3 HD Photo

HD Photo [12] (formerly known as Windows Media Photo) employs a compression
algorithm optimized for the digital photography market. HD Photo offers image quality
comparable to JPEG-2000 [13] with computational complexity and memory requirements
closer to JPEG.

Images are processed in 16x16 macro blocks, allowing a minimal memory footprint for
embedded implementations. HD Photo uses the reversible YCoCg-R color space and a
reversible lapped biorthogonal transform (LBT) based on the Hadamard transform and
rotation. The transform coefficients are quantized and coefficient prediction and adaptive
scanning is used before entropy encoding significant bits in several passes.

The compression algorithm is computationally efficient, and is designed for high
performance encoding and decoding while minimizing system resource requirements.
However, even though HD Photo is not as computationally expensive as JPEG-2000, it is
still a factor slower than JPEG.

3. Hardware Accelerated Decompression
Current graphics cards allow several forms of hardware decompression of color images
by exploiting a GPU, video decoding units or texture units.

3.1 Inverse DCT on a GPU

Part of the JPEG decompression algorithm can be implemented in one or more fragment
programs which can be executed on current GPUs. For instance the inverse Discrete
Cosine Transform (DCT) can be implemented in fragment programs as shown by nVidia
[15].

On a GeForce 6800 doing no other work, the performance of the inverse DCT
implemented in fragment programs by nVidia is about 134 Mega Pixels per second
(MP/s). However, the fragment programs only performs the inverse DCT for a grayscale
image. 1.5 times the amount of work is required to decompress a 4:2:0 JPEG color image,
which brings the process down to 89 MP/s. Combining the results and converting the
color space back to RGB further reduces the performance.

Entropy decoding can typically not be implemented in a fragment program because it is
not possible to read from a variable length bit stream on current graphics cards. As such
the entropy decoding has to be done on a CPU and the quantized frequencies have to be
uploaded to the graphics card. Unfortunately on today's CPUs the most expensive part of
JPEG decompression is the entropy decoding (mostly due to branching). Even if a fast
Huffman decoder is used with a lookup table this is typically more expensive than the
inverse DCT or the color conversion. Furthermore pushing the quantized frequencies to
the graphics card increases the upload. There is typically more upload bandwidth
required than used to upload the uncompressed image because the frequencies cannot be
uploaded as 8-bit texture components.

The nVidia inverse DCT implementation requires multiple fragment programs and
multiple rendering passes. This means multiple draw calls which typically does not
improve the overall performance. Obviously there is a trade between using the CPU and
GPU. With a lot of Hyper Threaded CPUs out there and a growing base of multi-core
CPUs, decompressing images on a CPU is usually faster than running a fragment
program on the GPU because the GPU is typically already taxed with 3D rendering.

3.2 Hardware Accelerated MPEG Decoding

Most of today's graphics cards support hardware accelerated MPEG-1 or MPEG-2
decoding. MPEG-1 and MPEG-2 can be setup to store only I-frames which are close to
compressed JPEG images. The MPEG decoder on the graphics card can write an MPEG-
1 or MPEG-2 image directly to a texture in memory on the graphics card which can then
be used for rendering. As such the hardware decoder can be used for general hardware
accelerated texture decompression.

Images can be uploaded to the graphics card as MPEG-1 or MPEG-2 files with a single
or multiple I-frames and they can be decompressed in hardware. During decoding these
MPEG-1 or MPEG-2 files will also take up memory on the graphics card. Unfortunately
current drivers are not mature enough to really benefit from hardware accelerated MPEG
decoding for real-time texture decompression.

3.3. DXT Compression

The DXT format, also known as S3TC [16, 17], is designed for real-time decompression
in hardware on the graphics card during rendering. DXT is a lossy compression format
with a fixed compression ratio of 4:1 or 6:1. DXT compression is a form of Block
Truncation Coding (BTC) where an image is divided into non-overlapping blocks and the
pixels in each block are quantized to a limited number of values. The color values of
pixels in a 4x4 pixel block are approximated with equidistant points on a line through
color space. Such a line is defined by two end points and for each pixel in the 4x4 block
an index is stored to one of the equidistant points on the line. The end points of the line
through color space are quantized to 16-bit 5:6:5 RGB format and either one or two
intermediate points are generated through interpolation.

Most of today's graphics cards support the DXT format in hardware. Unfortunately the
compression ratio of DXT is only 6:1 for three channel color images and 4:1 for channel
color images with alpha channel. These compression ratios are generally not good
enough to store vast amounts of texture data. However, a DXT compressed images can be
compressed down further by exploiting specific knowledge about the structure of the
DXT format. Half the data in the DXT1 format is used for RGB colors in 16-bit 5:6:5
format. For each 4x4 block of pixels there are two such RGB colors that define the end
points of the line through color space which is used to approximate the colors in the
block. The other half of the data in the DXT1 format is used to store indices to
equidistant points on the lines through color space.

The colors from all the 4x4 blocks can be placed in one or two textures and such textures
can be compressed with a regular texture compressor like JPEG or HD Photo. The
indices, however, are much harder to compress. The indices need to be compressed with
a lossless compressor because noticeable artifacts may occur even if the indices are only
off by one. A good DXT compressor will typically try to use all points on a line through
color space to preserve as much detail as possible. As a result compressing the indices
with an entropy encoder does not work well because the different indices occur at similar

frequencies. Furthermore the lines through color space can have any orientation in the
original texture. As a result run-length or LZ-based compression does not work very well
either because of the randomized nature of the sequences of indices. Only if the original
texture has a lot of flat areas, or areas with smooth axis aligned color ramps the
individual indices or sequences of indices will be similar and they will compress well.

First color image.

256 x 256 "Lena" image compressed
to DXT1 with the ATI Compressonator.

The indices from the DXT1 format drawn to an
image. The indices have been remapped to
natural order on the lines through color space.
There are some patterns but there is also a lot of
noise.

Second color image.

The compression of the indices can be improved by rotating and/or mirroring the indices
in each 4x4 block in order to line them up. However, even then the compression ratios are
still not very impressive (typically below 4:3). In other words it is hard to compress the
indices for high detail images which also means it is hard to compress a DXT1
compressed image down to half its original size. Even if the color data would compress
down to nothing, the indices remain and they consume half the data in the DXT1 format.

To compress a RGBA image in DXT5 format, the two textures from the DXT1 format
can be extended with an alpha channel. In the DXT5 format half the data is used for
colors plus an alpha channel and the other half is used to store indices either to points on
lines through color space or to points on lines through alpha space. Just like the color
indices, compressing the indices to points on lines through alpha space does not work
well for images with a high detail alpha channel.

Tests using high detail images show that the two color (+alpha) textures can be
compressed down with a JPEG compressor to about 50 to 40 percent of their DXT
compressed size with little loss in quality. The indices can be compressed down to about
90 to 80 percent of their original size. In the best case this results in a compression ratio
of about 10:1 for three channel color images and 7:1 for four channel color images with
an alpha channel. Although these compression ratios are reasonable, it is hard to achieve
these ratios for general images and it is even harder to go up to higher compression ratios.

At the cost of quality the DXT color data can be compressed down further but any loss in
quality and compression artifacts are typically magnified by the DXT compression.

Another issue is that mip maps which are typically used to avoid aliasing artifacts during
3D rendering either have to be stored and compressed with a full resolution image which
requires more storage space, or a DXT compressed image has to be decompressed, then
mip maps have to be generated from the uncompressed DXT and they have to be re-
compressed to DXT format. Creating mip maps from DXT compressed data typically
produces noticeable artifacts.

4. DCT Based Compression Format
A compression format for real-time texture streaming must achieve good compression
ratios and has to allow the implementation of a fast decompression algorithm on today's
computers. Evaluation of the above compression formats and decompression solutions
leads to a compression format very similar to JPEG. Regular JPEG is a free standard and
very fast implementations of the different sub-routines used for JPEG decompression are
readily available.

The compression format presented here is different from JPEG in that it uses the YCoCg
color space instead of the YCbCr color space. The YCoCg color space was first
introduced for H.264 video compression [18, 19]. The RGB to YCoCg transform has
been shown to be capable of achieving a decorrelation that is much better than that
obtained by various RGB to YCbCr transforms and is very close to that of the KL
transform when measured for a representative set of high-quality RGB test images [19].
Furthermore the transformation from RGB to YCoCg is very simple and requires only
integer additions and shifts. The following matrix transformation shows the conversion
from RGB to YCoCg.

Y = [¼ ½ ¼] [R]
Co = [½ 0 -½] [G]
Cg = [-¼ ½ -¼] [B]

The compression format presented here uses a sub-sampling ratio of 4:2:0 to achieve high
compression ratios at a minimal loss in quality.

4:2:0
4 2:0 2:0

Y Co Cg

The images below show the "Lena" image converted to YCoCg with a 4:2:0 sub-
sampling ratio.

4:2:0 orange chroma (Co)
drawn to an image.

Original 256 x 256 "Lena" image.

4:2:0 luma (Y) drawn to an image.

4:2:0 green chroma (Cg)
drawn to an image.

Just like JPEG each of the three channels, luma (Y), orange chroma (Co) and green
chroma (Cg), is processed individually. Also just like JPEG a Discrete Cosine Transform
(DCT) is used on each 8x8 block of data from one of the channels to transform the spatial
image data into a frequency map. The images below show the frequency data for the
"Lena" image after conversion to YCoCg with a 4:2:0 sub-sampling ratio.

4:2:0 orange chroma (Co)
frequencies drawn to an
image.

Original 256 x 256 "Lena" image.

4:2:0 luma (Y) frequencies drawn to an image.

4:2:0 green chroma (Cg)
frequencies drawn to an
image.

The frequency data is then quantized to remove image information that is less noticeable
to the human eye. The quantized frequencies are rearranged to zig-zag order and then
compressed with a simple run-length and Huffman encoder.

5. Fast Decompression
A fast decompressor is required for real-time streaming of compressed textures.
Decompressors for the JPEG format are readily available [20, 21]. The decompressor
described here for the compression format described in section 4 is very similar to a
JPEG decompressor.

Because the color data is stored in 4:2:0 format the decompressor works on tiles of 16x16
pixels. Such a tile contains one 8x8 block for each of the two chroma components and
four 8x8 blocks for the luma. There is only one intermediate buffer to which the DCT
coefficients for one tile are run-length and Huffman decoded. The coefficients are then
inverse transformed in place in this same buffer. The color space conversion transforms
YCoCg data from this intermediate buffer to RGB data directly into the destination image
to minimize the memory footprint during decompression.

An implementation in C of the decompression of one tile can be found in appendix A.
This particular implementation decompresses tiles with three color channels and an alpha
channel. The decompression of the alpha channel can be trivially removed for the
decompression of images with only three color channels.

5.1 Run-Length & Huffman Decoding

An implementation in C of the run-length and Huffman decoding can be found in
appendix B. The decoder reads run-length and Huffman compressed data from a bit
stream. SIMD optimized routines are readily available to fetch bits from a bit stream [22].
However, the run-length and Huffman decoder presented here does not use SIMD code.
The decoder presented here is optimized to reduce the number of conditional branches
and the remaining branches are setup to be more predictable. Conditional branches that
are hard to predict typically result in numerous mispredictions and significant penalties
on today's CPUs that implement a deep pipeline [23,24]. When a branch is mispredicted,
the misprediction penalty is typically equal to the depth of the pipeline.

Bits are read from the bit stream in the routines 'GetBits' and 'PeekBits'. Both routines
read bits from an intermediate buffer which may need to be re-filled regularly. This
intermediate buffer is filled in 'FillBitBuffer'. Filling the bit buffer in 'FillBitBuffer' has
been made branchless where the last byte of the bit stream is repeated if the decoder tries
to read beyond the end of the input bit stream.

Some key observations can be made in the Huffman decoder that allow the removal of
many conditional branches. First of all the Huffman codes used here are never longer
than 16 bits. Furthermore by definition Huffman codes for the more frequently occurring
symbols use fewer bits. In particular most symbols are encoded with 8 or less bits. As
such two lookup tables are implemented for codes with 8 or less bits. The first lookup
table 'look_nbits' stores the number of bits for Huffman codes with 8 or less bits. The
second lookup table 'look_sym' stores the actual symbol for a given bit pattern of 8 bits
that represents a Huffman code of 8 or less bits. Both lookup tables are indexed with 8

bits from the input stream. These 8 bits represent either the first 8 bits of a longer
Huffman code, or a Huffman code of 8 or less bits and possibly additional bits that are
not part of the Huffman code. For all bit patterns of 8 bits that represent the first 8 bits of
longer Huffman codes the 'look_nbits' table stores a zero. By testing for a zero in the
'look_nbits' table the decoder can tell whether or not the first 8 bits read from the input
stream contain a full Huffman code or a partial Huffman code. For Huffman codes of 8 or
less bits the bits are removed from the intermediate bit buffer and the actual symbol is
looked up in the 'look_sym' table.

Huffman codes with more than 8 bits are decoded in 'DecodeLong'. This routine first
reads 16 bits for the longest possible Huffman code. Then a fast test is used to determine
the actual number of bits for the long code. The 16 bits represent a long code of 9 up to
16 bits which is left justified to 16 bits. This left justified Huffman code is compared to a
set of constants specific to the given Huffman table, where the actual code has 'n' or more
bits if the left justified code is larger than or equal to 'test_nbits[n]'. The actual number of
bits is determined by comparing the left justified code with all constants and
accumulating the results of the comparisons. Once the actual number of bits is known the
bits are removed from the intermediate bit buffer. Furthermore a lookup table is used to
retrieve the symbol for the Huffman code.

After decoding the category the 'HuffmanDecode' routine reads an offset and calls the
routine 'ValueFromCategory' to calculate the actual coefficient value from the category
and offset. This routine has been made branchless without using a lookup table.

The end result is a run-length and Huffman decoder with small lookup tables and very
few conditional branches. There are two conditional branches to fill the bit buffer, one in
'GetBits' and one in 'PeekBits'. There is one conditional branch to switch between
decoding short and long Huffman codes in 'GetCategory'. There is a loop in
'DecodeLong' but this loop always executes a fixed number of iterations and can be
trivially unrolled by the compiler. Furthermore there is one conditional branch for the
run-length decoding in 'HuffmanDecode'.

5.2 Inverse DCT

There are several fast SIMD optimized implementations of the Inverse Discrete Cosine
Transform (iDCT) available [26, 27, 28]. The iDCT algorithm used here is based on the
Intel AP922 algorithm [27, 28]. This algorithm is specifically designed to exploit integer
SIMD architectures while satisfying the precision requirements of the IEEE standard
1180-1900 [25].

The AP922 algorithm uses several different rounding and correction techniques to
counter loss in precision. The AP922 algorithm first operates on rows using 32-bit
precision, and then on columns using 16-bit precision. The row iDCT uses the MMX /
SSE2 instruction 'pmaddwd' which calculates the 2D dot product of 16-bit integers and
stores the result as a 32-bit integer. The results of the dot products are added and right-
shifted to less precision with SHIFT_ROUND_ROW(). A rounder RND_INV_ROW (0.5

fixed point) is added before shifting down with SHIFT_ROUND_ROW() for proper
rounding.

The column iDCT uses the MMX / SSE2 instruction 'pmulhw' which computes

(a * b) >> 16.

This instruction rounds down and as such introduces a bias of -0.5. The AP922 algorithm
adds corrections in order to counter this bias. At two points a value of one is added and at
another two points a value of one is subtracted. Furthermore, in two places an 'or'
instruction is used to set the least significant bit which is statistically equivalent to adding
0.5. When using a column with only zeros and assuming infinite precision, these
corrections in the AP922 algorithm accumulate to the following bias values before using
SHIFT_ROUND_COL().

row bias

0 + 1

1 + 0.5 + sqrt(0.5)

2 - 0.5 - sqrt(0.5)

3 - 1

4 - 1

5 - 1.5 + sqrt(0.5)

6 - 0.5 - sqrt(0.5)

7 - 1

Instead of adding and or-ing values in the column iDCT, these bias values can be
propagated back through the column iDCT after removing the corrections, and added to
the same rounders that are used for proper rounding of the row iDCT. Through back
propagation the following rounders can be derived for BITS_INV_ACC = 4. These
rounders can be divided by two for the case BITS_INV_ACC = 5.

row rounder

0 - 2048

1 + 3755

2 + 2472

3 + 1361

4 + 0

5 - 1139

6 - 1024

7 - 1301

Before doing the shift-right with SHIFT_ROUND_COL() the AP922 algorithm adds
RND_INV_COL (0.5 fixed point) for proper rounding. This addition can be avoided by

adding 65536 to the above rounder for the first row. Furthermore the above rounders are
added in the row iDCT before doing the SHIFT_ROUND_ROW() where the AP922
algorithm adds RND_INV_ROW for proper rounding of the result of the row iDCT. In
other words not only the above rounders are added before the SHIFT_ROUND_ROW(),
but also the original RND_INV_ROW.

row rounder

0 RND_INV_ROW - 2048 + 65536

1 RND_INV_ROW + 3755

2 RND_INV_ROW + 2472

3 RND_INV_ROW + 1361

4 RND_INV_ROW + 0

5 RND_INV_ROW - 1139

6 RND_INV_ROW - 1024

7 RND_INV_ROW - 1301

The end result is the above set of rounders that add 0.5 (fixed point) before right-shifting
for proper rounding at the end of the row iDCT, add a bias to each row to take care of the
rounding in the column iDCT, and also add 0.5 (fixed point) before right-shifting for
proper rounding at the end of the column iDCT. When these rounders are pushed forward
through SHIFT_ROUND_ROW() and the column iDCT without corrections, this results
in rounding that is the same as or superior to the rounding of the AP922 algorithm.

Adding all the rounders in one place does not only improve the precision but also
simplifies the algorithm by removing several instructions throughout the column iDCT.
In particular this saves 12 'paddsw' instructions and 4 'por' instructions in the MMX
implementation and also saves 6 'paddsw' instructions and 2 'por' instructions in the
SSE2 implementation. The AP922 algorithm has been modified further to perform
dequantization right before the iDCT without having to temporarily spill the dequantized
values to memory.

An implementation in C of the modified AP922 algorithm can be found in appendix C.
MMX and SSE2 implementations can be found in appendix D and E respectively.

5.3 Color Space Conversion

SIMD optimized routines for the conversion from YCbCr to RGB as used by JPEG are
readily available [29]. The compression format described in section 4, however, does not
use the YCbCr color space. Instead the YCoCg color space is used which significantly
reduces the computational complexity. Unlike the conversion from YCbCr to RGB, the
conversion from YCoCg to RGB uses only addition and subtraction. The following
matrix transformation shows the conversion from YCoCg to RGB.

R = [1 1 -1] [Y]
G = [1 0 1] [Co]
B = [1 -1 -1] [Cg]

This transform can be implemented with as few as two additions and two subtractions as
shown below.

t = Y - Cg
R = t + Co
G = Y + Cg
B = t - Co

However, the YCoCg color data is stored in 4:2:0 format. In other words there is an
unique luma value for each pixel and there is one pair of chroma values for each 2x2
block of pixels. As such the conversion from 4:2:0 YCoCg to RGB is implemented
differently where for each 2x2 block of pixels a pair of chroma values is converted to
three values that can be added to each unique luma value. For each block of 2x2 pixels
the following three variables are calculated.

r = Co - Cg
s = Cg
t = Co + Cg

Then for each pixel the RGB values are calculated as follows.

R = Y + r
G = Y + s
B = Y - t

An implementation in C of the color conversion can be found in appendix F. This routine
works on one 8x8 block of a 16x16 tile at a time. For each 8x8 block the routine works
on two rows at a time. In other words the routine works on rows of 2x2 blocks of pixels.
The routine also writes out a decompressed alpha channel for RGBA textures. For RGB
only textures this alpha channel can be trivially removed and a constant value of 255 can

be written to the destination texture for the alpha channel. The RGBA values are written
to the destination texture with clamping because the quantization and DCT transform
may have distorted the YCoCg and alpha values such that the conversion back to RGBA
results in values that are outside the [0,255] range. MMX and SSE2 implementations can
be found in appendix G and H respectively.

6 Mip Mapping & DXT Compression
Mip maps are pre-filtered collections of downsampled textures that accompany a full
resolution texture intended to reduce aliasing artifacts during rendering. When streaming
textures from disk these mip maps can be stored compressed with the full resolution
textures. Both the full resolution texture and the mip maps can then be streamed from
disk and decompressed. However, instead of storing and streaming compressed mips
maps it is usually faster to generate the mip maps from the decompressed full resolution
texture. Once the full resolution texture is decompressed a simple box filter can used to
create the mip maps.

Most of today's graphics cards allow textures to be stored in a variety of compressed
formats that are decompressed in hardware during rasterization. As previously described
one such format which is supported by most graphics cards is S3TC also known as DXT
compression [16, 17]. DXT compressed textures do not only require significantly less
memory on the graphics card, they generally also render faster than uncompressed
textures because of reduced bandwidth requirements. Some quality may be lost due to the
DXT compression. However, when the same amount of memory is used on the graphics
card there is generally a significant gain in quality.

The texture streaming solution presented here stores textures in a compression format
very similar to JPEG. This format cannot be decompressed in hardware during
rasterization on current graphics cards. However, it may still be desirable to save memory
on the graphics card and improve the rendering performance by using textures that are
stored in a compressed format that can be decompressed in hardware during rasterization.
After streaming and decompressing a texture from disk and generating mip maps, the full
resolution texture with mip maps can be compressed to DXT format in real-time as
shown in [30]. On high end systems with more video memory available the high quality
DXT compression as described in [30] can be used. On systems where video memory and
performance are of no concern at all, the textures can be used without compression for
the best visual quality.

7. Threaded Pipeline
The texture streaming solution presented here reads data from disk which is then
decompressed and possibly re-compressed. If this process is serialized all steps in the
pipeline add up and the throughput is limited by the time it takes to complete all the steps
in the pipeline. Even with a very fast decompressor things add up and the throughput may
not be sufficient to stream in detail at a rate which is high enough for high fidelity
rendering.

A large texture database typically stores many smaller textures or the textures are broken
up into many smaller tiles. As such it is possible to run different steps from the texture
streaming pipeline in parallel as long as each step works on different data. The following
image shows the full pipeline broken up in four threads going from streaming data from
disk all the way to up to the graphics driver.

Current graphics drivers can either not be orchestrated from multiple threads or need to
be synchronized first. As such there is only one thread talking to the graphics driver
which is the renderer.

Threading the pipeline does not improve the latency for streaming individual textures.
However, breaking the pipeline up in threads does significantly improve the throughput
when continuously streaming texture data. The streaming, decompression and possibly
re-compression of textures is broken up into two threads. With multi-threading the de-re-
compression time is typically completely hidden by the time it takes to stream
compressed data from disk because the de-re-compression is usually faster than reading
data from disk, especially when streaming from a slow DVD drive. While new data is
being read from disk the de-re-compression thread can decompress and recompress data
that has already been read. Furthermore the streaming thread does not do a whole lot of
work and mostly waits for the hard drive or DVD drive. In other words a lot of CPU time
is available for the decompression thread while the streaming thread is waiting.

8. Results
The following images show the original 256x256 "Lena" image and the same image
compressed with a 10:1 ratio (to 10% of the original size) and a 20:1 ratio (to 5% of the
original size) using the compression format described in section 4.

original 256x256 "Lena" image 10:1 compressed 256x256 "Lena" image 20:1 compressed 256x256 "Lena" image

The streaming throughput of the decompressor described in this article is tested and
compared with several decompressors for JPEG 2000, HD Photo and regular JPEG. The
"JPEG 2000 JasPer" is version 1.701.0 of the JasPer JPEG 2000 decompressor [6]. This
decompressor does not use any SIMD optimizations. The "JPEG 2000 OpenJPEG" is
version 1.0 of the OpenJPEG [7] JPEG 2000 decompressor. Just like JasPer this
decompressor does not use any SIMD optimizations. The "JPEG 2000 RV-Media" is the
decompressor from the RV-Media Jpeg2000 SDK 1.0 Beta [8]. The "JPEG 2000
LeadTools" is the decompressor from the LeadTools Raster Imaging SDK Pro 14.5 [9].
The "JPEG 2000 J2K-Codec" is version 1.9 of the J2K-Codec [10] which is an SIMD
optimized JPEG-2000 decompressor. The "JPEG 2000 Kakadu" is version 5.2.2 of the
Kakadu JPEG 2000 decompressor [11] which is also SIMD optimized. The "HDPhoto
.Net" is the HD Photo decompressor that comes with the Microsoft .Net Framework 3.0
[14]. The "HDPhoto Reference" is the reference implementation for embedded devices
from the Microsoft DPK 1.0 [12]. The "JPEG IJG" is version 6b of the JPEG
decompressor from the Independent JPEG Group [20]. This decompressor by default uses
an integer LL&M iDCT and does not use any SIMD optimizations. The "JPEG IJG x86
SIMD" is the IJG JPEG library with x86 SIMD extensions by Miyasaka Masaru [21].
The "fast DCT" is the decompressor described in this article.

The different decompressors are tested using the 256x256 "Lena" image compressed at a
10:1 and a 20:1 ratio and a typical chroma sub-sampling ratio of 4:2:0. For the RGBA
decompression the blue channel from the "Lena" image is replicated to the alpha channel.
At a 10:1 compression ratio with 4:2:0 chroma sub-sampling all compressed images
exhibit very good or comparable quality. At a 20:1 compression ratio all compressed

images show some visible loss in quality. The images compressed to JPEG 2000 or HD
Photo typically show less noticeable loss in quality than the images compressed to JPEG
or the compression format described here. The following table shows the RGB peak
signal-to-noise ratio (PSNR) for the 10:1 and 20:1 compressed 256x256 "Lena" image
using the different decompressors (higher = better).

RGB PSNR

 decompressor 10:1 ratio 20:1 ratio

 JPEG 2000 JasPer 41.6 38.5

 JPEG 2000 OpenJPEG 41.6 38.5

 JPEG 2000 RV-Media 41.6 38.5

 JPEG 2000 LeadTools 41.6 38.5

 JPEG 2000 J2K-Codec 41.4 38.4

 JPEG 2000 Kakadu 41.5 38.5

 HDPhoto .Net 41.4 39.0

 HDPhoto Reference 41.4 39.0

 JPEG IJG 39.9 36.6

 JPEG IJG x86 SIMD 39.9 36.6

 fast DCT (C) 40.1 37.0

 fast DCT (MMX optimized) 40.1 37.0

 fast DCT (SSE2 optimized) 40.1 37.0

The following tables show the decompression performance of several decompressors in
MegaPixels per second (MP/s) on an Intel 2.8 GHz dual-core Xeon and an Intel 2.9 GHz
Core 2 Extreme. The compressed images are decompressed as fast as possible from
memory without generating mip maps or compression to DXT. The decompression from
memory is done with hot cache to make the tests reproducible using the same CPUs with
as little dependencies on the memory subsystem as possible.

Throughput in Mega Pixels per second
decompressing RGB from memory

 10:1 ratio 20:1 ratio
 decompressor MP/s 1 MP/s 2 MP/s 1 MP/s 2
 JPEG 2000 JasPer 0.55 1.72 0.61 1.92
 JPEG 2000 OpenJPEG 0.64 1.34 0.72 1.55
 JPEG 2000 RV-Media 1.05 2.89 1.28 3.56
 JPEG 2000 LeadTools 2.65 5.96 3.40 7.65
 JPEG 2000 J2K-Codec 3.58 8.01 4.88 11.05
 JPEG 2000 Kakadu 3.42 10.53 4.37 15.67
 HDPhoto .Net 8.60 17.07 10.01 20.24
 HDPhoto Reference 10.69 18.70 12.52 22.54
 JPEG IJG 25.37 44.08 30.42 53.14
 JPEG IJG x86 SIMD 54.45 103.21 67.62 129.12
 fast DCT (C) 30.74 48.72 34.40 55.21
 fast DCT (MMX optimized) 70.49 125.24 88.82 170.71
 fast DCT (SSE2 optimized) 83.44 131.47 117.43 190.14

Throughput in Mega Pixels per second
decompressing RGBA from memory

 10:1 ratio 20:1 ratio
 decompressor MP/s 1 MP/s 2 MP/s 1 MP/s 2
 JPEG 2000 JasPer 0.46 1.35 0.50 1.53
 JPEG 2000 OpenJPEG 0.50 1.02 0.57 1.20
 JPEG 2000 RV-Media 0.82 2.25 0.94 2.67
 JPEG 2000 LeadTools 2.02 3.75 2.62 4.59
 JPEG 2000 J2K-Codec 2.66 5.88 3.67 8.27
 JPEG 2000 Kakadu 2.29 7.83 3.04 11.76
 HDPhoto .Net 6.55 11.95 7.72 14.21
 HDPhoto Reference 7.13 12.75 8.40 15.33
 JPEG IJG NA NA NA NA
 JPEG IJG x86 SIMD NA NA NA NA
 fast DCT (C) 21.20 33.79 23.95 38.01
 fast DCT (MMX optimized) 46.81 84.19 60.70 117.31
 fast DCT (SSE2 optimized) 57.12 90.95 78.75 132.80

1 Intel 2.8 GHz Dual-Core Xeon ("Paxville" 90nm NetBurst microarchitecture)
2 Intel 2.9 GHz Core 2 Extreme ("Conroe" 65nm Core 2 microarchitecture)

The complete streaming solution is tested with a 12× DVD drive, with a peak outer edge
throughput close to 15 MB/s. Ignoring the seek times, the peak outer edge throughput is
equivalent to 5.2 RGB MP/s or 3.9 RGBA MP/s when streaming uncompressed texture
data. The throughput increases significantly when using a 10:1 or 20:1 compression ratio
and the SSE2 implementation of the decompressor described here. The following tables
show the peak throughput when streaming and decompressing from the 12× DVD drive
without using a multi-threaded pipeline.

Throughput in Mega Pixels per second
streaming & decompressing RGB from a 12× DVD

 10:1 ratio 20:1 ratio
 decompressor MP/s 1 MP/s 2 MP/s 1 MP/s 2
 JPEG 2000 JasPer 0.54 1.67 0.61 1.89
 JPEG 2000 OpenJPEG 0.63 1.31 0.72 1.53
 JPEG 2000 RV-Media 1.03 2.74 1.26 3.44
 JPEG 2000 LeadTools 2.52 5.35 3.29 7.13
 JPEG 2000 J2K-Codec 3.35 6.95 4.66 10.00
 JPEG 2000 Kakadu 3.21 8.77 4.20 13.63
 HDPhoto .Net 7.39 12.88 9.14 16.97
 HDPhoto Reference 8.88 13.78 11.18 18.55
 JPEG IJG 17.10 23.95 23.58 35.27
 JPEG IJG x86 SIMD 26.71 34.77 41.11 57.87
 fast DCT (C) 19.38 25.25 25.90 36.17
 fast DCT (MMX optimized) 30.07 36.96 48.09 64.96
 fast DCT (SSE2 optimized) 32.20 37.48 55.39 67.59

Throughput in Mega Pixels per second
streaming & decompressing RGBA from a 12× DVD

 10:1 ratio 20:1 ratio
 decompressor MP/s 1 MP/s 2 MP/s 1 MP/s 2
 JPEG 2000 JasPer 0.45 1.31 0.50 1.50
 JPEG 2000 OpenJPEG 0.49 0.99 0.57 1.81
 JPEG 2000 RV-Media 0.80 2.13 0.93 2.58
 JPEG 2000 LeadTools 1.92 3.42 2.54 4.34
 JPEG 2000 J2K-Codec 2.49 5.12 3.51 7.48
 JPEG 2000 Kakadu 2.16 6.53 2.93 10.23
 HDPhoto .Net 5.61 9.16 7.03 12.04
 HDPhoto Reference 6.04 9.63 7.59 12.83
 JPEG IJG NA NA NA NA
 JPEG IJG x86 SIMD NA NA NA NA
 fast DCT (C) 13.77 18.17 18.36 25.62
 fast DCT (MMX optimized) 21.37 26.80 34.26 47.08
 fast DCT (SSE2 optimized) 23.29 27.45 39.35 49.39

1 Intel 2.8 GHz Dual-Core Xeon ("Paxville" 90nm NetBurst microarchitecture)
2 Intel 2.9 GHz Core 2 Extreme ("Conroe" 65nm Core 2 microarchitecture)

With a threaded pipeline the throughput increases significantly and the streaming solution
presented here is typically limited by the DVD throughput as shown in the following
tables.

Throughput in Mega Pixels per second
streaming & decompressing RGB from a 12× DVD

using a threaded pipeline

 10:1 ratio 20:1 ratio
 decompressor MP/s 1 MP/s 2 MP/s 1 MP/s 2
 JPEG 2000 JasPer 0.55 1.72 0.61 1.92
 JPEG 2000 OpenJPEG 0.64 1.34 0.72 1.55
 JPEG 2000 RV-Media 1.05 2.89 1.28 3.56
 JPEG 2000 LeadTools 2.65 5.96 3.40 7.65
 JPEG 2000 J2K-Codec 3.58 8.01 4.88 11.05
 JPEG 2000 Kakadu 3.42 10.53 4.37 15.67
 HDPhoto .Net 8.60 17.07 10.01 20.24
 HDPhoto Reference 10.69 18.70 12.52 22.54
 JPEG IJG 25.37 44.08 30.42 53.14
 JPEG IJG x86 SIMD 52.43 52.43 67.62 104.86
 fast DCT (C) 30.74 48.72 34.40 55.21
 fast DCT (MMX optimized) 52.43 52.43 88.82 104.86
 fast DCT (SSE2 optimized) 52.43 52.43 104.86 104.86

Throughput in Mega Pixels per second
streaming & decompressing RGBA from a 12× DVD

using a threaded pipeline

 10:1 ratio 20:1 ratio
 decompressor MP/s 1 MP/s 2 MP/s 1 MP/s 2
 JPEG 2000 JasPer 0.46 1.35 0.50 1.53
 JPEG 2000 OpenJPEG 0.50 1.02 0.57 1.20
 JPEG 2000 RV-Media 0.82 2.25 0.94 2.67
 JPEG 2000 LeadTools 2.02 3.75 2.62 4.59
 JPEG 2000 J2K-Codec 2.66 5.88 3.67 8.27
 JPEG 2000 Kakadu 2.29 7.83 3.04 11.76
 HDPhoto .Net 6.55 11.95 7.72 14.21
 HDPhoto Reference 7.13 12.75 8.40 15.33
 JPEG IJG NA NA NA NA
 JPEG IJG x86 SIMD NA NA NA NA
 fast DCT (C) 21.20 33.79 23.95 38.01
 fast DCT (MMX optimized) 39.32 39.32 60.70 78.64
 fast DCT (SSE2 optimized) 39.32 39.32 78.64 78.64

1 Intel 2.8 GHz Dual-Core Xeon ("Paxville" 90nm NetBurst microarchitecture)
2 Intel 2.9 GHz Core 2 Extreme ("Conroe" 65nm Core 2 microarchitecture)

The above tables show that without SIMD optimizations the streaming of texture data
with a 10:1 or 20:1 compression ratio is limited not by the DVD throughput but by the
decompressor throughput. However, with SIMD optimizations the throughput is only
limited by the throughput of the DVD drive and the decompression time is completely
hidden. At higher compression ratios the streaming performance typically improves. Not
only are the bandwidth requirements reduced, the decompression becomes faster as well
because at higher compression ratios an entropy decoder has to decode fewer bits. All
tests shown here are with the 256x256 "Lena" image. For other images the RGB-PSNR
may be different when using to the various compression formats. However, the
performance of the different decompressors is mostly dependent on the compression ratio
and typically varies very little with different images.

It is interesting to relate the streaming performance to realistic rendering of a
walk/run/drive-through over uniquely textured terrain. To simplify the calculations the
view point is assumed to be moving over a flat terrain and the texture detail is displayed
in square layers around the view point. Each layer around the view point displays the
same number of pixels but a lower detail layer is twice the size in world coordinates than
the higher detail layer directly above it. To render the flat terrain at a decent resolution of
1024 x 768 or higher, a typical resolution of 2048 x 2048 pixels is used for each square
layer. If there are five square layers of 2048 x 2048 pixels there are a total of 5 x 2048 x
2048 pixels (about 21 Mega Pixels) available for rendering at any time. As the view point

moves the layers have to be updated and essentially rows and columns of pixels have to
be updated at the side(s) of the square layers in the direction in which the view point
moves. In the worst case the view point moves along a diagonal and both a row and
column of pixels need to be updated. Assuming there are four pixels per square inch on
the highest detail layer, this amounts to 11209 pixels that have to be updated per inch of
movement along the diagonal.

The average walking speed for a human is about 3 miles per hour which equals about 53
inches per second. At this speed about 0.59 mega pixels have to be streamed per second
to update the texture detail around the view point. A very fast human can run at a speed
of up to 20 miles per hour which equals about 352 inches per second. At this speed about
3.95 mega pixels have to be streamed per second. When driving a car at 80 miles per
hour about 15.78 mega pixels have to be streamed per second. These numbers are for
rendering a terrain which is completely flat without any elevation. For a terrain with hills
and mountains the amount of texture detail that needs to be updated can be up to 1.5
times higher.

Although the streaming pipeline is threaded, none of the decompressors tested above is
using multiple threads. During the streaming tests the CPU is doing no other work than
decompressing data. On single CPU/core systems there is usually only a small percentage
of the CPU available for texture streaming and decompression because the CPU is
typically already taxed with other things like rendering. Furthermore mip maps may have
to be generated for the streamed textures and the textures including mip maps may need
to be compressed to DXT format which also consumes CPU time. In other words on
systems with few CPUs/cores it is even more important to use a very fast SIMD
optimized decompressor in order to stream in texture data at a rate high enough for high
fidelity rendering.

9. Conclusion
On today's computers, especially computers with multiple CPUs or cores, real-time
streaming of vast amounts of texture data can be achieved by using compression and a
high performance SIMD optimized decompressor. Furthermore the streaming throughput
can be improved significantly by using multi-threading to break up the texture streaming
pipeline into multiple steps that can run in parallel.

10. Future Work
As faster CPUs and systems with more CPUs or cores become available it will become
advantageous to use compression formats that achieve better quality and higher
compression ratios at the cost of more expensive decompression. As more CPU time
becomes available compression formats like JPEG 2000 and HD Photo typically achieve
acceptable quality at higher compression ratios and as such improve the streaming
throughput as long as the throughput is not limited by the time required for
decompression.

11. References
1. JPEG: Still Image Data Compression Standard

William B., Pennebaker, Joan L., Mitchell
Van Nostrand Reinhold, New York 1993
Available Online: http://www.amazon.com/JPEG-Compression-Standard-Multimedia-Standards/dp/0442012721

2. The JPEG Still Image Data Compression Standard
Gregory K. Wallace
Special issue on digital multimedia systems, Volume 34, Issue 4, Pages: 30 - 44, 1991
Available Online: http://portal.acm.org/citation.cfm?id=103089

3. JPEG-2000
Joint Photographic Experts Group
ISO/IEC 15444-1:2004, March 2000
Available Online: http://www.jpeg.org/jpeg2000/

4. An Overview of JPEG-2000
Michael W. Marcellin, Michael J. Gormish, Ali Bilgin, Martin P. Boliek
Proc. of IEEE Data Compression Conference, pp. 523-541, 2000
Available Online: http://rii.ricoh.com/~gormish/pdf/dcc2000_jpeg2000_note.pdf

5. JPEG 2000 Image Codecs Comparison
Dmitriy Vatolin, Alexey Moskvin, Oleg Petrov, Artem Titarenko
CS MSU Graphics & Media Lab Video Group, September 2005
Available Online: http://www.compression.ru/video

6. JasPer
Michael David Adams
The JasPer Project version 1.701.0, February 2004
Available Online: http://www.ece.uvic.ca/~mdadams/jasper/

7. OpenJPEG
David Janssens, Yannick Verschueren, Francois Devaux, Antonin Descampe, HervZ Drolon, FreeImage Team
Communications and remote sensing Laboratory, Universite catholique de Louvain, Belgium, version 1.0,
December 2005
Available Online:http:/www.tele.ucl.ac.be/PROJECTS/OPENJPEG/

8. RV-Media Jpeg2000 SDK
RV-Media Ltd.
Jpeg2000 SDK version 1.0 Beta, July 2006
Available Online: http://www.rv-media.net/content/blogcategory/15/36/

9. LeadTools Raster Imaging
LeadTools
Raster Imaging SDK Pro 14.5, June 2006
Available Online: http://www.leadtools.com/SDK/Raster/Raster-Imaging.htm

10. J2K-Codec
Alex Saveliev
J2K-Codec version 1.9, May 2006
Available Online: http://j2k-codec.com/

11. Kakadu JPEG 2000
David Taubman
Kakadu, version 5.2.2, July 2006
Available Online: http://www.kakadusoftware.com/

12. HD Photo
Microsoft
Microsoft, May 2006
Available Online:http:/www.microsoft.com/windows/windowsmedia/forpros/wmphoto/default.aspx

http://www.amazon.com/JPEG-Compression-Standard-Multimedia-Standards/dp/0442012721
http://portal.acm.org/citation.cfm?id=103089
http://www.jpeg.org/jpeg2000/
http://rii.ricoh.com/~gormish/pdf/dcc2000_jpeg2000_note.pdf
http:/www.compression.ru/video
http:/www.ece.uvic.ca/~mdadams/jasper/
http://www.tele.ucl.ac.be/PROJECTS/OPENJPEG/
http://www.rv-media.net/content/blogcategory/15/36/
http://www.leadtools.com/SDK/Raster/Raster-Imaging.htm
http://j2k-codec.com/
http://www.kakadusoftware.com/
http://www.microsoft.com/windows/windowsmedia/forpros/wmphoto/default.aspx

13. Windows Media Photo and JPEG 2000 Codecs Comparison
Dmitriy Vatolin, Alexey Moskvin, Oleg Petrov
CS MSU Graphics & Media Lab Video Group, August 2006
Available Online: http://www.compression.ru/video

14. HD Photo Codec
Microsoft
.Net Framework 3.0, October 2006
Available Online: http://www.microsoft.com/downloads/details.aspx?FamilyID=a6e324c4-ae01-4725-a92e-
2b38beaf34c0&DisplayLang=en

15. Discrete Cosine Transform Shader
nVidia
Featured Code Samples at developer.nvidia.com, September 23rd 2005
Available Online:
http://download.developer.nvidia.com/developer/SDK/Individual_Samples/featured_samples.html#gpgpu_dct

16. S3 Texture Compression
Pat Brown
NVIDIA Corporation, November 2001
Available Online: http://oss.sgi.com/projects/ogl-sample/registry/EXT/texture_compression_s3tc.txt

17. Compressed Texture Resources
Microsoft Developer Network
DirectX SDK, April 2006
Available Online: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/directx9_c/Compressed_Texture_Formats.asp

18. Transform, Scaling & Color Space Impact of Professional Extensions
H. S. Malvar, G. J. Sullivan
ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6 Document JVT-H031, Geneva, May 2003
Available Online: http://ftp3.itu.int/av-arch/jvt-site/2003_05_Geneva/JVT-H031.doc

19. YCoCg-R: A Color Space with RGB Reversibility and Low Dynamic Range
H. S. Malvar, G. J. Sullivan
Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG, Document No. JVT-I014r3, July 2003
Available Online: http://research.microsoft.com/~malvar/papers/JVT-I014r3.pdf

20. Free Library for JPEG Image Compression
Independent JPEG Group
IJG, March 27th 1998
Available Online: http://www.ijg.org/

21. IJG JPEG library with x86 SIMD extensions
Miyasaka Masaru
Softlab, version 1.02, February 2006
Available Online: http://cetus.sakura.ne.jp/softlab/jpeg-x86simd/jpegsimd.html

22. Using MMX™ Instructions to Get Bits From a Data Stream
Intel
Intel® Developer Services, March 1996
Available Online:

23. Avoiding the Cost of Branch Misprediction
Rajiv Kapoor
Intel, December 2002
Available Online: http://www.intel.com/cd/ids/developer/asmo-na/eng/19952.htm

24. Branch and Loop Reorganization to Prevent Mispredicts
Jeff Andrews
Intel, January 2004
Available Online: http://www.intel.com/cd/ids/developer/asmo-
na/eng/microprocessors/ia32/pentium4/optimization/66779.htm

http://www.compression.ru/video
http://www.microsoft.com/downloads/details.aspx?FamilyID=a6e324c4-ae01-4725-a92e-2b38beaf34c0&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=a6e324c4-ae01-4725-a92e-2b38beaf34c0&DisplayLang=en
http://oss.sgi.com/projects/ogl-sample/registry/EXT/texture_compression_s3tc.txt
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/directx9_c/Compressed_Texture_Formats.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/directx9_c/Compressed_Texture_Formats.asp
http://ftp3.itu.int/av-arch/jvt-site/2003_05_Geneva/JVT-H031.doc
http://research.microsoft.com/~malvar/papers/JVT-I014r3.pdf
http://www.ijg.org/
http://cetus.sakura.ne.jp/softlab/jpeg-x86simd/jpegsimd.html
http://www.intel.com/cd/ids/developer/asmo-na/eng/19952.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/microprocessors/ia32/pentium4/optimization/66779.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/microprocessors/ia32/pentium4/optimization/66779.htm

25. IEEE Standard Specification for the Implementation of 8x8 Inverse Discrete Cosine Transform
IEEE Std. 1180-1990
Institute of Electrical and Electronics Engineers, Inc, 1990
Available Online: http://ieeexplore.ieee.org/iel1/2259/4127/00159237.pdf?arnumber=159237

26. Using MMX™ Instructions in a Fast iDCT Algorithm for MPEG Decoding
Intel
Intel® Developer Services, March 1996
Available Online:

27. A Fast Precise Implementation of 8x8 Discrete Cosine Transform Using the Streaming SIMD Extensions and
MMX™ Instructions
Intel
Intel Application Note, AP-922, Version 1.0, June 4th 1999
Available Online: http://citeseer.ist.psu.edu/697580.html

28. Using Streaming SIMD Extensions 2 (SSE2) to Implement an Inverse Discrete Cosine Transform
Intel
Intel Application Note, AP-945, Version 2.0, September 21st 2000
Available Online: http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/code/optimization/193014.htm

29. Color Conversion from YUV12 to RGB Using Intel MMX™ Technology
Intel
Intel® Developer Services, March 1996
Available Online:

30. Real-Time DXT Compression
J.M.P. van Waveren
Intel Software Network, October 2006
Available Online: http://www.intel.com/cd/ids/developer/asmo-na/eng/324337.htm

http://ieeexplore.ieee.org/iel1/2259/4127/00159237.pdf?arnumber=159237
http://citeseer.ist.psu.edu/697580.html
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/code/optimization/193014.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/324337.htm

Appendix A

/*
 Decompression Of One Tile
 Copyright (C) 2006 Id Software, Inc.

 This code is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This code is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.
*/

struct HuffmanTable {
 ...
};

HuffmanTable huffTableYDC;
HuffmanTable huffTableYAC;
HuffmanTable huffTableCoCgDC;
HuffmanTable huffTableCoCgAC;
HuffmanTable huffTableADC;
HuffmanTable huffTableAAC;

unsigned short quantTableY[] = { ... };
unsigned short quantTableCoCg[] = { ... };
unsigned short quantTableA[] = { ... };

int dcY;
int dcCo;
int dcCg;
int dcA;

void DecompressTileRGBA(byte *rgba, int stride) {
 ALIGN16(short YCoCgA[10*64]);

 // Y: 4 blocks, Co: 1 block, Cg: 1 block
 HuffmanDecode(YCoCgA + 0*64, huffTableYDC, huffTableYAC, &dcY);
 HuffmanDecode(YCoCgA + 1*64, huffTableYDC, huffTableYAC, &dcY);
 HuffmanDecode(YCoCgA + 2*64, huffTableYDC, huffTableYAC, &dcY);
 HuffmanDecode(YCoCgA + 3*64, huffTableYDC, huffTableYAC, &dcY);
 HuffmanDecode(YCoCgA + 4*64, huffTableCoCgDC, huffTableCoCgAC, &dcCo);
 HuffmanDecode(YCoCgA + 5*64, huffTableCoCgDC, huffTableCoCgAC, &dcCg);

 // Inverse DCT of YCoCg channels
 IDCT(YCoCgA + 0*64, quantTableY, YCoCgA + 0*64);
 IDCT(YCoCgA + 1*64, quantTableY, YCoCgA + 1*64);
 IDCT(YCoCgA + 2*64, quantTableY, YCoCgA + 2*64);
 IDCT(YCoCgA + 3*64, quantTableY, YCoCgA + 3*64);
 IDCT(YCoCgA + 4*64, quantTableCoCg, YCoCgA + 4*64);
 IDCT(YCoCgA + 5*64, quantTableCoCg, YCoCgA + 5*64);

 // Alpha: 4 blocks
 HuffmanDecode(YCoCgA + 6*64, huffTableADC, huffTableAAC, &dcA);
 HuffmanDecode(YCoCgA + 7*64, huffTableADC, huffTableAAC, &dcA);
 HuffmanDecode(YCoCgA + 8*64, huffTableADC, huffTableAAC, &dcA);
 HuffmanDecode(YCoCgA + 9*64, huffTableADC, huffTableAAC, &dcA);

 // Inverse DCT of Alpha channel
 IDCT(YCoCgA + 6*64, quantTableA, YCoCgA + 6*64);
 IDCT(YCoCgA + 7*64, quantTableA, YCoCgA + 7*64);
 IDCT(YCoCgA + 8*64, quantTableA, YCoCgA + 8*64);
 IDCT(YCoCgA + 9*64, quantTableA, YCoCgA + 9*64);

 // Color conversion
 YCoCgAToRGBA(YCoCgA, rgba, stride);
}

Appendix B

/*
 Run-Length and Huffman Decoding of DCT Coefficients
 Copyright (C) 2006 Id Software, Inc.

 This code is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This code is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.
*/

int jpeg_natural_order[64+16] = { ... };

const int HUFF_WORD_SIZE = 8; // symbol size in bits
const int HUFF_MAXBITS = 16; // maximum number of bits in any code
const int HUFF_LOOKUPBITS = 8; // lookup table for codes with less than this number of bits

struct HuffmanTable {
 int minCode[HUFF_MAXBITS+1]; // minCode[k] is smallest code of length k
 int symOffset[HUFF_MAXBITS+1]; // symOffset[k] is index into symbols[] of 1st symbol of length k
 unsigned char symbols[1<<HUFF_WORD_SIZE]; // symbols in order of increasing code length
 unsigned char look_nbits[1<<HUFF_LOOKUPBITS]; // number bits for codes with no more than HUFF_LOOKUPBITS bits
 unsigned char look_sym[1<<HUFF_LOOKUPBITS]; // symbol for codes with no more than HUFF_LOOKUPBITS bits
 int test_nbits[HUFF_MAXBITS]; // codes left justified to 16 bits larger equal test_nbits[k] have k or more bits
};

int getBits;
int getBuff;
int dataBytes;
const byte * data;

void HuffmanDecode(short *coef, const HuffmanTable &dctbl, const HuffmanTable &actbl, int *lastDC) {
 int s, k, r, t;

 memset(coef, 0, 64 * sizeof(short));

 s = GetCategory(dctbl); // get DC category number

 if (s != 0) {
 r = GetBits(s); // get offset in this DC category
 s = ValueFromCategory(s, r); // get DC difference value
 }

 s += *lastDC;
 *lastDC = s;

 coef[0] = (short) s;

 for (k = 1; k < 64; k++) {
 s = GetCategory(actbl); // s: (run, category)
 t = s & 15; // t: category for this non-zero AC
 r = s >> 4; // r: run length for zero AC, 0 <= r < 16

 k += r;

 if (t != 0) {
 r = GetBits(t); // get offset in this AC category
 s = ValueFromCategory(t, r); // get AC value
 coef[jpeg_natural_order[k]] = (short) s;
 } else {
 if (r != 15) {
 break; // all the remaining AC values are zero
 }
 }
 }
}

void FillBitBuffer(void) {
 assert(getBits <= 15);
 dataBytes -= 2;
 int s = (~((unsigned int) dataBytes)) >> 31;
 getBuff = (getBuff << 16) | ((int) data[0] << 8) | ((int) data[s]);
 getBits += 16;
 data += 2*s; // repeat last byte if at the end
}

inline int GetBits(int bits) {
 assert(bits <= 16);
 if(getBits < bits) {
 FillBitBuffer();
 }
 getBits -= bits;
 return (getBuff >> getBits) & ((1 << bits) - 1);
}

inline int PeekBits(int bits) {
 assert(bits <= 16);
 if(getBits < bits) {
 FillBitBuffer();
 }
 return (getBuff >> (getBits - bits)) & ((1 << bits) - 1);
}

inline int GetCategory(const HuffmanTable &htbl) {
 // Peek the first HUFF_LOOKUPBITS bits.
 // FillBitBuffer will repeat the last byte when trying to read beyond the end of the stream.
 // However, the first bits we peek here are still valid and the lookup table will work as intended.
 int look = PeekBits(HUFF_LOOKUPBITS);

 // Lookup the number of bits for this Huffman code.
 int nb = htbl.look_nbits[look];

 // If this is a huffman code of HUFF_LOOKUPBITS or less bits.
 if (nb != 0) {
 getBits -= nb;
 return htbl.look_sym[look];
 } else {
 // Decode long codes with length >= HUFF_LOOKUPBITS.
 return DecodeLong(htbl);
 }
}

int DecodeLong(const HuffmanTable &htbl) {
 // Peek the maximum number of bits for a code.

 int look = PeekBits(HUFF_MAXBITS);

 // Find out how many bits are actually used.
 int nb = HUFF_LOOKUPBITS + 1;
 for (int i = HUFF_LOOKUPBITS + 1; i < HUFF_MAXBITS; i++) {
 int b = (look >= htbl.test_nbits[i]);
 nb += b;
 }

 getBits -= nb;
 look >>= HUFF_MAXBITS - nb;

 return htbl.symbols[htbl.symOffset[nb] + look - htbl.minCode[nb]];
}

inline int ValueFromCategory(int category, int offset) {
 // return ((offset) < (1<<((category)-1)) ? (offset) + (((-1)<<(category)) + 1) : (offset))
 int m = 1 << category;
 return offset + (((offset - (m >> 1)) >> 31) & (1 - m));
}

Appendix C

/*
 Integer Inverse Discrete Cosine Transform
 Copyright (C) 2006 Id Software, Inc.
 Original AP922 algorithm is Copyright (C) 1999 - 2000 Intel Corporation.

 This code is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This code is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.
*/

#define BITS_INV_ACC 5 // 4 or 5 for IEEE
#define SHIFT_INV_ROW (16 - BITS_INV_ACC)
#define SHIFT_INV_COL (1 + BITS_INV_ACC)

#define RND_INV_ROW 1024 * (6 - BITS_INV_ACC) // 1 << (SHIFT_INV_ROW-1)
#define RND_INV_COL 16 * (BITS_INV_ACC - 3) // 1 << (SHIFT_INV_COL-1)

#define SHIFT_ROUND_ROW(x) ((x) >> (SHIFT_INV_ROW))
#define SHIFT_ROUND_COL(x) ((x) >> (SHIFT_INV_COL))

#define BIAS_SCALE(X) (X / (BITS_INV_ACC - 3))

#define f_tg_1_16 tan(1.0 * M_PI / 16.0)
#define f_tg_2_16 tan(2.0 * M_PI / 16.0)
#define f_tg_3_16 tan(3.0 * M_PI / 16.0)

#define f_cos_1_16 cos(1.0 * M_PI / 16.0)
#define f_cos_2_16 cos(2.0 * M_PI / 16.0)
#define f_cos_3_16 cos(3.0 * M_PI / 16.0)
#define f_cos_4_16 cos(4.0 * M_PI / 16.0)
#define f_cos_5_16 cos(5.0 * M_PI / 16.0)
#define f_cos_6_16 cos(6.0 * M_PI / 16.0)
#define f_cos_7_16 cos(7.0 * M_PI / 16.0)

#define FIX16(x) (unsigned short) (x * (1<<16) + 0.5)
#define FIX15_COS_1_16(x) (short) (x * f_cos_1_16 * (1<<15) + 0.5)
#define FIX15_COS_2_16(x) (short) (x * f_cos_2_16 * (1<<15) + 0.5)
#define FIX15_COS_3_16(x) (short) (x * f_cos_3_16 * (1<<15) + 0.5)
#define FIX15_COS_4_16(x) (short) (x * f_cos_4_16 * (1<<15) + 0.5)

const unsigned short tg_1_16 = FIX16(f_tg_1_16);
const unsigned short tg_2_16 = FIX16(f_tg_2_16);
const unsigned short tg_3_16 = FIX16(f_tg_3_16);
const unsigned short cos_4_16 = FIX16(f_cos_4_16);

#define INIT_TABLE(FF) \
 FF(f_cos_4_16), FF(f_cos_2_16), FF(f_cos_4_16), FF(f_cos_6_16), \
 FF(f_cos_4_16), FF(f_cos_6_16), -FF(f_cos_4_16), -FF(f_cos_2_16), \
 FF(f_cos_4_16), -FF(f_cos_6_16), -FF(f_cos_4_16), FF(f_cos_2_16), \
 FF(f_cos_4_16), -FF(f_cos_2_16), FF(f_cos_4_16), -FF(f_cos_6_16), \

 \
 FF(f_cos_1_16), FF(f_cos_3_16), FF(f_cos_5_16), FF(f_cos_7_16), \
 FF(f_cos_3_16), -FF(f_cos_7_16), -FF(f_cos_1_16), -FF(f_cos_5_16), \
 FF(f_cos_5_16), -FF(f_cos_1_16), FF(f_cos_7_16), FF(f_cos_3_16), \
 FF(f_cos_7_16), -FF(f_cos_5_16), FF(f_cos_3_16), -FF(f_cos_1_16)

static const short tab_i_04[32] = {
 INIT_TABLE(FIX15_COS_4_16)
};

static const short tab_i_17[32] = {
 INIT_TABLE(FIX15_COS_1_16)
};

static const short tab_i_26[32] = {
 INIT_TABLE(FIX15_COS_2_16)
};

static const short tab_i_35[32] = {
 INIT_TABLE(FIX15_COS_3_16)
};

static const short *inverseRowTables[] = {
 tab_i_04, tab_i_17, tab_i_26, tab_i_35,
 tab_i_04, tab_i_35, tab_i_26, tab_i_17
};

static const unsigned int rounder[8] = {
 RND_INV_ROW - BIAS_SCALE(2048) + 65536,
 RND_INV_ROW + BIAS_SCALE(3755),
 RND_INV_ROW + BIAS_SCALE(2472),
 RND_INV_ROW + BIAS_SCALE(1361),
 RND_INV_ROW + BIAS_SCALE(0),
 RND_INV_ROW - BIAS_SCALE(1139),
 RND_INV_ROW - BIAS_SCALE(1024),
 RND_INV_ROW - BIAS_SCALE(1301)
};

#define PMULHW(X, Y) ((short)(((int)(X)*(Y))>>16))
#define DEQUANTIZE(X, Q) ((X)*(Q))

void IDCT(const short *coeff, const unsigned short *quant, short *dest) {

 for(int i = 0; i < 8; i++) {
 const short *x = &coeff[i*8];
 short *y = &dest[i*8];
 const short *w = inverseRowTables[i];

 short x0 = DEQUANTIZE(x[0], quant[i*8+0]);
 short x1 = DEQUANTIZE(x[1], quant[i*8+1]);
 short x2 = DEQUANTIZE(x[2], quant[i*8+2]);
 short x3 = DEQUANTIZE(x[3], quant[i*8+3]);

 short x4 = DEQUANTIZE(x[4], quant[i*8+4]);
 short x5 = DEQUANTIZE(x[5], quant[i*8+5]);
 short x6 = DEQUANTIZE(x[6], quant[i*8+6]);
 short x7 = DEQUANTIZE(x[7], quant[i*8+7]);

 int a0 = x0 * w[0] + x2 * w[1] + x4 * w[2] + x6 * w[3];
 int a1 = x0 * w[4] + x2 * w[5] + x4 * w[6] + x6 * w[7];
 int a2 = x0 * w[8] + x2 * w[9] + x4 * w[10] + x6 * w[11];
 int a3 = x0 * w[12] + x2 * w[13] + x4 * w[14] + x6 * w[15];

 int b0 = x1 * w[16] + x3 * w[17] + x5 * w[18] + x7 * w[19];
 int b1 = x1 * w[20] + x3 * w[21] + x5 * w[22] + x7 * w[23];
 int b2 = x1 * w[24] + x3 * w[25] + x5 * w[26] + x7 * w[27];
 int b3 = x1 * w[28] + x3 * w[29] + x5 * w[30] + x7 * w[31];

 a0 += rounder[i]; /* + RND_INV_ROW; */
 a1 += rounder[i]; /* + RND_INV_ROW; */
 a2 += rounder[i]; /* + RND_INV_ROW; */
 a3 += rounder[i]; /* + RND_INV_ROW; */

 y[0] = SHIFT_ROUND_ROW(a0 + b0);
 y[1] = SHIFT_ROUND_ROW(a1 + b1);
 y[2] = SHIFT_ROUND_ROW(a2 + b2);
 y[3] = SHIFT_ROUND_ROW(a3 + b3);

 y[4] = SHIFT_ROUND_ROW(a3 - b3);
 y[5] = SHIFT_ROUND_ROW(a2 - b2);
 y[6] = SHIFT_ROUND_ROW(a1 - b1);
 y[7] = SHIFT_ROUND_ROW(a0 - b0);
 }

 for(int i = 0; i < 8; i++) {
 short *x = &dest[i];
 short *y = &dest[i];

 short tp765 = x[1*8] + PMULHW(x[7*8], tg_1_16);
 short tp465 = - x[7*8] + PMULHW(x[1*8], tg_1_16);
 short tm765 = x[3*8] + PMULHW(x[5*8], tg_3_16);
 short tm465 = x[5*8] - PMULHW(x[3*8], tg_3_16);

 short t7 = tp765 + tm765; /* + 1; // correction +1.0 */
 short tp65 = tp765 - tm765;
 short t4 = tp465 + tm465;
 short tm65 = tp465 - tm465; /* + 1; // correction +1.0 */

 short t6 = PMULHW(tp65 + tm65, cos_4_16); /* | 1; // correction +0.5 */
 short t5 = PMULHW(tp65 - tm65, cos_4_16); /* | 1; // correction +0.5 */

 short tp03 = x[0*8] + x[4*8];
 short tp12 = x[0*8] - x[4*8];

 short tm03 = PMULHW(x[6*8], tg_2_16) + x[2*8];
 short tm12 = PMULHW(x[2*8], tg_2_16) - x[6*8];

 short t0 = tp03 + tm03; /* + RND_INV_COL; */
 short t3 = tp03 - tm03; /* + RND_INV_COL - 1; // correction -1.0 */
 short t1 = tp12 + tm12; /* + RND_INV_COL; */
 short t2 = tp12 - tm12; /* + RND_INV_COL - 1; // correction -1.0 */

 y[0*8] = SHIFT_ROUND_COL(t0 + t7);
 y[1*8] = SHIFT_ROUND_COL(t1 + t6);
 y[2*8] = SHIFT_ROUND_COL(t2 + t5);
 y[3*8] = SHIFT_ROUND_COL(t3 + t4);

 y[4*8] = SHIFT_ROUND_COL(t3 - t4);
 y[5*8] = SHIFT_ROUND_COL(t2 - t5);
 y[6*8] = SHIFT_ROUND_COL(t1 - t6);
 y[7*8] = SHIFT_ROUND_COL(t0 - t7);
 }
}

Appendix D

/*
 MMX Optimized Integer Inverse Discrete Cosine Transform
 Copyright (C) 2006 Id Software, Inc.
 Original AP922 algorithm is Copyright (C) 1999 - 2000 Intel Corporation.

 This code is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This code is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.
*/

#define __ALIGN8 __declspec(align(8))

#define BITS_INV_ACC 5 // 4 or 5 for IEEE
#define SHIFT_INV_ROW 16 - BITS_INV_ACC
#define SHIFT_INV_COL 1 + BITS_INV_ACC

#define RND_INV_ROW 1024 * (6 - BITS_INV_ACC) // 1 << (SHIFT_INV_ROW-1)
#define RND_INV_COL 16 * (BITS_INV_ACC - 3) // 1 << (SHIFT_INV_COL-1)

#define DUP2(X) (X),(X)
#define DUP4(X) (X),(X),(X),(X)
#define BIAS_SCALE(X) (X / (BITS_INV_ACC - 3))

__ALIGN8 static short tg_1_16[4] = { DUP4(13036) }; // tg * (1<<16) + 0.5f
__ALIGN8 static short tg_2_16[4] = { DUP4(27146) }; // tg * (1<<16) + 0.5f
__ALIGN8 static short tg_3_16[4] = { DUP4(-21746) }; // tg * (1<<16) + 0.5f
__ALIGN8 static short cos_4_16[4] = { DUP4(-19195) }; // cos * (1<<16) + 0.5f

// Table for rows 0,4 - constants are multiplied on cos_4_16
__ALIGN8 static short tab_i_04[] = {
 16384, 21407, 16384, 8867, // w05 w04 w01 w00
 16384, 8867, -16384, -21407, // w07 w06 w03 w02
 16384, -8867, 16384, -21407, // w13 w12 w09 w08
 -16384, 21407, 16384, -8867, // w15 w14 w11 w10
 22725, 19266, 19266, -4520, // w21 w20 w17 w16
 12873, 4520, -22725, -12873, // w23 w22 w19 w18
 12873, -22725, 4520, -12873, // w29 w28 w25 w24
 4520, 19266, 19266, -22725 // w31 w30 w27 w26
};

// Table for rows 1,7 - constants are multiplied on cos_1_16
__ALIGN8 static short tab_i_17[] = {
 22725, 29692, 22725, 12299, // w05 w04 w01 w00
 22725, 12299, -22725, -29692, // w07 w06 w03 w02
 22725, -12299, 22725, -29692, // w13 w12 w09 w08
 -22725, 29692, 22725, -12299, // w15 w14 w11 w10
 31521, 26722, 26722, -6270, // w21 w20 w17 w16
 17855, 6270, -31521, -17855, // w23 w22 w19 w18
 17855, -31521, 6270, -17855, // w29 w28 w25 w24
 6270, 26722, 26722, -31521 // w31 w30 w27 w26
};

// Table for rows 2,6 - constants are multiplied on cos_2_16
__ALIGN8 static short tab_i_26[] = {
 21407, 27969, 21407, 11585, // w05 w04 w01 w00
 21407, 11585, -21407, -27969, // w07 w06 w03 w02
 21407, -11585, 21407, -27969, // w13 w12 w09 w08
 -21407, 27969, 21407, -11585, // w15 w14 w11 w10
 29692, 25172, 25172, -5906, // w21 w20 w17 w16
 16819, 5906, -29692, -16819, // w23 w22 w19 w18
 16819, -29692, 5906, -16819, // w29 w28 w25 w24
 5906, 25172, 25172, -29692 // w31 w30 w27 w26
};

// Table for rows 3,5 - constants are multiplied on cos_3_16
__ALIGN8 static short tab_i_35[] = {
 19266, 25172, 19266, 10426, // w05 w04 w01 w00
 19266, 10426, -19266, -25172, // w07 w06 w03 w02
 19266, -10426, 19266, -25172, // w13 w12 w09 w08
 -19266, 25172, 19266, -10426, // w15 w14 w11 w10
 26722, 22654, 22654, -5315, // w21 w20 w17 w16
 15137, 5315, -26722, -15137, // w23 w22 w19 w18
 15137, -26722, 5315, -15137, // w29 w28 w25 w24
 5315, 22654, 22654, -26722 // w31 w30 w27 w26
};

__ALIGN8 static const unsigned int rounder_0[2] = { DUP2(RND_INV_ROW - BIAS_SCALE(2048) + 65536) };
__ALIGN8 static const unsigned int rounder_1[2] = { DUP2(RND_INV_ROW + BIAS_SCALE(3755)) };
__ALIGN8 static const unsigned int rounder_2[2] = { DUP2(RND_INV_ROW + BIAS_SCALE(2472)) };
__ALIGN8 static const unsigned int rounder_3[2] = { DUP2(RND_INV_ROW + BIAS_SCALE(1361)) };
__ALIGN8 static const unsigned int rounder_4[2] = { DUP2(RND_INV_ROW + BIAS_SCALE(0)) };
__ALIGN8 static const unsigned int rounder_5[2] = { DUP2(RND_INV_ROW - BIAS_SCALE(1139)) };
__ALIGN8 static const unsigned int rounder_6[2] = { DUP2(RND_INV_ROW - BIAS_SCALE(1024)) };
__ALIGN8 static const unsigned int rounder_7[2] = { DUP2(RND_INV_ROW - BIAS_SCALE(1301)) };

#define DCT_8_INV_ROW(table, rounder) \
 __asm movq mm2, mm0 /* 2: x3 x2 x1 x0*/ \
 __asm movq mm3, qword ptr [table+ 0] /* 3: w05 w04 w01 w00*/ \
 __asm pshufw mm0, mm0, 10001000b /* x2 x0 x2 x0*/ \
 __asm movq mm4, qword ptr [table+ 8] /* 4: w07 w06 w03 w02*/ \
 __asm movq mm5, mm1 /* 5: x7 x6 x5 x4*/ \
 __asm pmaddwd mm3, mm0 /* x2*w05+x0*w04 x2*w01+x0*w00*/ \
 __asm movq mm6, qword ptr [table+32] /* 6: w21 w20 w17 w16*/ \
 __asm pshufw mm1, mm1, 10001000b /* x6 x4 x6 x4*/ \
 __asm pmaddwd mm4, mm1 /* x6*w07+x4*w06 x6*w03+x4*w02*/ \
 __asm movq mm7, qword ptr [table+40] /* 7: w23 w22 w19 w18*/ \
 __asm pshufw mm2, mm2, 11011101b /* x3 x1 x3 x1*/ \
 __asm pmaddwd mm6, mm2 /* x3*w21+x1*w20 x3*w17+x1*w16*/ \
 __asm pshufw mm5, mm5, 11011101b /* x7 x5 x7 x5*/ \
 __asm pmaddwd mm7, mm5 /* x7*w23+x5*w22 x7*w19+x5*w18*/ \
 __asm paddd mm3, qword ptr rounder /* +rounder */ \
 __asm pmaddwd mm0, qword ptr [table+16] /* x2*w13+x0*w12 x2*w09+x0*w08*/ \
 __asm paddd mm3, mm4 /* 4: a1=sum(even1) a0=sum(even0)*/ \
 __asm pmaddwd mm1, qword ptr [table+24] /* x6*w15+x4*w14 x6*w11+x4*w10*/ \
 __asm movq mm4, mm3 /* 4: a1 a0 */ \
 __asm pmaddwd mm2, qword ptr [table+48] /* x3*w29+x1*w28 x3*w25+x1*w24*/ \
 __asm paddd mm6, mm7 /* 7: b1=sum(odd1) b0=sum(odd0)*/ \
 __asm pmaddwd mm5, qword ptr [table+56] /* x7*w31+x5*w30 x7*w27+x5*w26*/ \
 __asm paddd mm3, mm6 /* a1+b1 a0+b0*/ \
 __asm paddd mm0, qword ptr rounder /* +rounder*/ \
 __asm psrad mm3, SHIFT_INV_ROW /* y1=a1+b1 y0=a0+b0*/ \
 __asm paddd mm0, mm1 /* 1: a3=sum(even3) a2=sum(even2)*/ \
 __asm psubd mm4, mm6 /* 6: a1-b1 a0-b0 */ \

 __asm movq mm7, mm0 /* 7: a3 a2 */ \
 __asm paddd mm2, mm5 /* 5: b3=sum(odd3) b2=sum(odd2)*/ \
 __asm paddd mm0, mm2 /* a3+b3 a2+b2*/ \
 __asm psrad mm4, SHIFT_INV_ROW /* y6=a1-b1 y7=a0-b0*/ \
 __asm psubd mm7, mm2 /* 2: a3-b3 a2-b2*/ \
 __asm psrad mm0, SHIFT_INV_ROW /* y3=a3+b3 y2=a2+b2*/ \
 __asm psrad mm7, SHIFT_INV_ROW /* y4=a3-b3 y5=a2-b2*/ \
 __asm packssdw mm3, mm0 /* 0: y3 y2 y1 y0*/ \
 __asm packssdw mm7, mm4 /* 4: y6 y7 y4 y5*/ \
 __asm pshufw mm7, mm7, 10110001b /* y7 y6 y5 y4 */

#define DCT_8_INV_COL_4 \
 __asm movq mm1, qword ptr tg_3_16 /* 1: tg_3_16 */ \
 __asm movq mm2, mm0 /* 2: x5 */ \
 __asm movq mm3, qword ptr [edx+3*16] /* 3: x3 */ \
 __asm pmulhw mm0, mm1 /* x5*tg_3_16 */ \
 __asm movq mm4, qword ptr [edx+7*16] /* 4: x7 */ \
 __asm pmulhw mm1, mm3 /* x3*tg_3_16 */ \
 __asm movq mm5, qword ptr tg_1_16 /* 5: tg_1_16 */ \
 __asm movq mm6, mm4 /* 6: x7 */ \
 __asm pmulhw mm4, mm5 /* x7*tg_1_16 */ \
 __asm paddsw mm0, mm2 /* x5*tg_3_16 */ \
 __asm pmulhw mm5, [edx+1*16] /* x1*tg_1_16 */ \
 __asm paddsw mm1, mm3 /* x3*tg_3_16 */ \
 __asm movq mm7, qword ptr [edx+6*16] /* 7: x6 */ \
 __asm paddsw mm0, mm3 /* 3: tm765 = x5*tg_3_16+x3 */ \
 __asm movq mm3, qword ptr tg_2_16 /* 3: tg_2_16 */ \
 __asm psubsw mm2, mm1 /* 1: tm465 = x5-x3*tg_3_16 */ \
 __asm pmulhw mm7, mm3 /* x6*tg_2_16 */ \
 __asm movq mm1, mm0 /* 1: tm765 */ \
 __asm pmulhw mm3, [edx+2*16] /* x2*tg_2_16 */ \
 __asm psubsw mm5, mm6 /* 6: tp465 = x1*tg_1_16-x7 */ \
 __asm paddsw mm4, [edx+1*16] /* tp765 = x1+x7*tg_1_16 */ \
 __asm paddsw mm0, mm4 /* t7 = tp765 + tm765 */ \
 __asm psubsw mm4, mm1 /* 1: tp65 = tp765 - tm765 */ \
 __asm paddsw mm7, [edx+2*16] /* tm03 = x2+x6*tg_2_16 */ \
 __asm movq mm6, mm5 /* 6: tp465 */ \
 __asm psubsw mm3, [edx+6*16] /* tm12 = x2*tg_2_16-x6 */ \
 __asm psubsw mm5, mm2 /* tm65 = tp465 - tm465 */ \
 __asm paddsw mm6, mm2 /* 2: t4 = tp465 + tm465 */ \
 __asm movq [edx+7*16], mm0 /* 0: save t7 in y7 (tmp) */ \
 __asm movq mm1, mm4 /* 1: tp65 */ \
 __asm movq mm2, qword ptr cos_4_16 /* 2: cos_4_16 */ \
 __asm paddsw mm4, mm5 /* tp65 + tm65 */ \
 __asm movq mm0, qword ptr cos_4_16 /* 0: cos_4_16 */ \
 __asm pmulhw mm2, mm4 /* (tp65 + tm65)*cos_4_16 */ \
 __asm movq [edx+3*16], mm6 /* 6: save t4 in y3 (tmp) */ \
 __asm psubsw mm1, mm5 /* 5: tp65 - tm65 */ \
 __asm movq mm6, [edx] /* 6: x0 */ \
 __asm pmulhw mm0, mm1 /* (tp65 - tm65)*cos_4_16 */ \
 __asm movq mm5, [edx+4*16] /* 5: x4 */ \
 __asm paddsw mm4, mm2 /* 2: t6 = (tp65 + tm65)*cos_4_16 */ \
 __asm paddsw mm5, mm6 /* tp03 = x0 + x4 */ \
 __asm psubsw mm6, [edx+4*16] /* tp12 = x0 - x4 */ \
 __asm paddsw mm0, mm1 /* 1: t5 = (tp65 - tm65)*cos_4_16 */ \
 __asm movq mm2, mm5 /* 2: tp03 */ \
 __asm paddsw mm5, mm7 /* t0 = tp03 + tm03 */ \
 __asm movq mm1, mm6 /* 1: tp12 */ \
 __asm psubsw mm2, mm7 /* 7: t3 = tp03 - tm03 */ \
 __asm movq mm7, [edx+7*16] /* t7 */ \
 __asm paddsw mm6, mm3 /* t1 = tp12 + tm12 */ \
 __asm paddsw mm7, mm5 /* t0 + t7 */ \

 __asm psraw mm7, SHIFT_INV_COL /* y0 = t0 + t7 */ \
 __asm psubsw mm1, mm3 /* 3: t2 = tp12 - tm12 */ \
 __asm movq mm3, mm6 /* 3: t1 */ \
 __asm paddsw mm6, mm4 /* t1 + t6 */ \
 __asm movq [edx], mm7 /* 7: save y0 */ \
 __asm psraw mm6, SHIFT_INV_COL /* y1 = t1 + t6 */ \
 __asm movq mm7, mm1 /* 7: t2 */ \
 __asm paddsw mm1, mm0 /* t2 + t5 */ \
 __asm movq [edx+1*16], mm6 /* 6: save y1 */ \
 __asm psraw mm1, SHIFT_INV_COL /* y2 = t2 + t5 */ \
 __asm movq mm6, [edx+3*16] /* 6: t4 */ \
 __asm psubsw mm7, mm0 /* 0: t2 - t5 */ \
 __asm paddsw mm6, mm2 /* t3 + t4 */ \
 __asm psubsw mm2, [edx+3*16] /* t3 - t4 */ \
 __asm psraw mm7, SHIFT_INV_COL /* y5 = t2 - t5 */ \
 __asm movq [edx+2*16], mm1 /* 1: save y2 */ \
 __asm psraw mm6, SHIFT_INV_COL /* y3 = t3 + t4 */ \
 __asm psubsw mm5, [edx+7*16] /* t0 - t7 */ \
 __asm psraw mm2, SHIFT_INV_COL /* y4 = t3 - t4 */ \
 __asm movq [edx+3*16], mm6 /* 6: save y3 */ \
 __asm psubsw mm3, mm4 /* 4: t1 - t6 */ \
 __asm movq [edx+4*16], mm2 /* 2: save y4 */ \
 __asm psraw mm3, SHIFT_INV_COL /* y6 = t1 - t6 */ \
 __asm movq [edx+5*16], mm7 /* 7: save y5 */ \
 __asm psraw mm5, SHIFT_INV_COL /* y7 = t0 - t7 */ \
 __asm movq [edx+6*16], mm3 /* 3: save y6 */ \
 __asm movq [edx+7*16], mm5 /* 5: save y7 */

#define DEQUANTIZE(reg, mem) __asm pmullw reg, mem

void IDCT_MMX(const short *coeff, const unsigned short *quant, short *dest) {
 __asm mov ecx, coeff
 __asm mov edx, dest
 __asm mov esi, quant

 __asm movq mm0, [ecx]
 __asm movq mm1, [ecx+8]
 DEQUANTIZE(mm0, [esi+ 0])
 DEQUANTIZE(mm1, [esi+ 8])
 DCT_8_INV_ROW(tab_i_04, rounder_0); /* row 0 */
 __asm movq mm0, [ecx+16]
 __asm movq qword ptr [edx], mm3 /* 3: save y3 y2 y1 y0 */
 __asm movq mm1, [ecx+24]
 __asm movq qword ptr [edx+8], mm7 /* 7: save y7 y6 y5 y4 */
 DEQUANTIZE(mm0, [esi+16])
 DEQUANTIZE(mm1, [esi+24])
 DCT_8_INV_ROW(tab_i_17, rounder_1); /* row 1 */
 __asm movq mm0, [ecx+32]
 __asm movq qword ptr [edx+16], mm3 /* 3: save y3 y2 y1 y0 */
 __asm movq mm1, [ecx+40]
 __asm movq qword ptr [edx+24], mm7 /* 7: save y7 y6 y5 y4 */
 DEQUANTIZE(mm0, [esi+32])
 DEQUANTIZE(mm1, [esi+40])
 DCT_8_INV_ROW(tab_i_26, rounder_2); /* row 2 */
 __asm movq mm0, [ecx+48]
 __asm movq qword ptr [edx+32], mm3 /* 3: save y3 y2 y1 y0 */
 __asm movq mm1, [ecx+56]
 __asm movq qword ptr [edx+40], mm7 /* 7: save y7 y6 y5 y4 */
 DEQUANTIZE(mm0, [esi+48])
 DEQUANTIZE(mm1, [esi+56])
 DCT_8_INV_ROW(tab_i_35, rounder_3); /* row 3 */
 __asm movq mm0, [ecx+64]

 __asm movq qword ptr [edx+48], mm3 /* 3: save y3 y2 y1 y0 */
 __asm movq mm1, [ecx+72]
 __asm movq qword ptr [edx+56], mm7 /* 7: save y7 y6 y5 y4 */
 DEQUANTIZE(mm0, [esi+64])
 DEQUANTIZE(mm1, [esi+72])
 DCT_8_INV_ROW(tab_i_04, rounder_4); /* row 4 */
 __asm movq mm0, [ecx+80]
 __asm movq qword ptr [edx+64], mm3 /* 3: save y3 y2 y1 y0 */
 __asm movq mm1, [ecx+88]
 __asm movq qword ptr [edx+72], mm7 /* 7: save y7 y6 y5 y4 */
 DEQUANTIZE(mm0, [esi+80])
 DEQUANTIZE(mm1, [esi+88])
 DCT_8_INV_ROW(tab_i_35, rounder_5); /* row 5 */
 __asm movq mm0, [ecx+96]
 __asm movq qword ptr [edx+80], mm3 /* 3: save y3 y2 y1 y0 */
 __asm movq mm1, [ecx+104]
 __asm movq qword ptr [edx+88], mm7 /* 7: save y7 y6 y5 y4 */
 DEQUANTIZE(mm0, [esi+96])
 DEQUANTIZE(mm1, [esi+104])
 DCT_8_INV_ROW(tab_i_26, rounder_6); /* row 6 */
 __asm movq mm0, [ecx+112]
 __asm movq qword ptr [edx+96], mm3 /* 3: save y3 y2 y1 y0 */
 __asm movq mm1, [ecx+120]
 __asm movq qword ptr [edx+104],mm7 /* 7: save y7 y6 y5 y4 */
 DEQUANTIZE(mm0, [esi+112])
 DEQUANTIZE(mm1, [esi+120])
 DCT_8_INV_ROW(tab_i_17, rounder_7); /* row 7 */
 __asm movq qword ptr [edx+112],mm3 /* 3: save y3 y2 y1 y0 */
 __asm movq mm0, qword ptr [edx+80] /* 0: x5 */
 __asm movq qword ptr [edx+120],mm7 /* 7: save y7 y6 y5 y4 */

 DCT_8_INV_COL_4
 __asm movq mm0, qword ptr [edx+88] /* 0: x5 */
 __asm add edx, 8
 DCT_8_INV_COL_4
 __asm emms
}

Appendix E

/*
 SSE2 Optimized Integer Inverse Discrete Cosine Transform
 Copyright (C) 2006 Id Software, Inc.
 Original AP922 algorithm is Copyright (C) 1999 - 2000 Intel Corporation.

 This code is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This code is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.
*/

#define __ALIGN16 __declspec(align(16))

#define BITS_INV_ACC 5 // 4 or 5 for IEEE
#define SHIFT_INV_ROW 16 - BITS_INV_ACC
#define SHIFT_INV_COL 1 + BITS_INV_ACC

#define RND_INV_ROW 1024 * (6 - BITS_INV_ACC) // 1 << (SHIFT_INV_ROW-1)
#define RND_INV_COL 16 * (BITS_INV_ACC - 3) // 1 << (SHIFT_INV_COL-1)

#define DUP4(X) (X),(X),(X),(X)
#define DUP8(X) (X),(X),(X),(X),(X),(X),(X),(X)
#define BIAS_SCALE(X) (X / (BITS_INV_ACC - 3))

__ALIGN16 static short M128_tg_1_16[8] = { DUP8(13036) }; // tg * (1<<16) + 0.5
__ALIGN16 static short M128_tg_2_16[8] = { DUP8(27146) }; // tg * (1<<16) + 0.5
__ALIGN16 static short M128_tg_3_16[8] = { DUP8(-21746) }; // tg * (1<<16) + 0.5
__ALIGN16 static short M128_cos_4_16[8] = { DUP8(-19195) }; // cos * (1<<16) + 0.5

//---

// Table for rows 0,4 - constants are multiplied on cos_4_16
__ALIGN16 static short M128_tab_i_04[] = {
 16384, 21407, 16384, 8867, // w05 w04 w01 w00
 16384, -8867, 16384, -21407, // w13 w12 w09 w08
 16384, 8867, -16384, -21407, // w07 w06 w03 w02
 -16384, 21407, 16384, -8867, // w15 w14 w11 w10
 22725, 19266, 19266, -4520, // w21 w20 w17 w16
 12873, -22725, 4520, -12873, // w29 w28 w25 w24
 12873, 4520, -22725, -12873, // w23 w22 w19 w18
 4520, 19266, 19266, -22725 // w31 w30 w27 w26
};

// Table for rows 1,7 - constants are multiplied on cos_1_16
__ALIGN16 static short M128_tab_i_17[] = {
 22725, 29692, 22725, 12299, // w05 w04 w01 w00
 22725, -12299, 22725, -29692, // w13 w12 w09 w08
 22725, 12299, -22725, -29692, // w07 w06 w03 w02
 -22725, 29692, 22725, -12299, // w15 w14 w11 w10
 31521, 26722, 26722, -6270, // w21 w20 w17 w16
 17855, -31521, 6270, -17855, // w29 w28 w25 w24

 17855, 6270, -31521, -17855, // w23 w22 w19 w18
 6270, 26722, 26722, -31521 // w31 w30 w27 w26
};

// Table for rows 2,6 - constants are multiplied on cos_2_16
__ALIGN16 static short M128_tab_i_26[] = {
 21407, 27969, 21407, 11585, // w05 w04 w01 w00
 21407, -11585, 21407, -27969, // w13 w12 w09 w08
 21407, 11585, -21407, -27969, // w07 w06 w03 w02
 -21407, 27969, 21407, -11585, // w15 w14 w11 w10
 29692, 25172, 25172, -5906, // w21 w20 w17 w16
 16819, -29692, 5906, -16819, // w29 w28 w25 w24
 16819, 5906, -29692, -16819, // w23 w22 w19 w18
 5906, 25172, 25172, -29692 // w31 w30 w27 w26
};

// Table for rows 3,5 - constants are multiplied on cos_3_16
__ALIGN16 static short M128_tab_i_35[] = {
 19266, 25172, 19266, 10426, // w05 w04 w01 w00
 19266, -10426, 19266, -25172, // w13 w12 w09 w08
 19266, 10426, -19266, -25172, // w07 w06 w03 w02
 -19266, 25172, 19266, -10426, // w15 w14 w11 w10
 26722, 22654, 22654, -5315, // w21 w20 w17 w16
 15137, -26722, 5315, -15137, // w29 w28 w25 w24
 15137, 5315, -26722, -15137, // w23 w22 w19 w18
 5315, 22654, 22654, -26722 // w31 w30 w27 w26
};

__ALIGN16 static const unsigned int rounder_0[4] = { DUP4(RND_INV_ROW - BIAS_SCALE(2048) + 65536) };
__ALIGN16 static const unsigned int rounder_1[4] = { DUP4(RND_INV_ROW + BIAS_SCALE(3755)) };
__ALIGN16 static const unsigned int rounder_2[4] = { DUP4(RND_INV_ROW + BIAS_SCALE(2472)) };
__ALIGN16 static const unsigned int rounder_3[4] = { DUP4(RND_INV_ROW + BIAS_SCALE(1361)) };
__ALIGN16 static const unsigned int rounder_4[4] = { DUP4(RND_INV_ROW + BIAS_SCALE(0)) };
__ALIGN16 static const unsigned int rounder_5[4] = { DUP4(RND_INV_ROW - BIAS_SCALE(1139)) };
__ALIGN16 static const unsigned int rounder_6[4] = { DUP4(RND_INV_ROW - BIAS_SCALE(1024)) };
__ALIGN16 static const unsigned int rounder_7[4] = { DUP4(RND_INV_ROW - BIAS_SCALE(1301)) };

#define DCT_8_INV_ROW(table1, table2, rounder1, rounder2) \
 __asm pshuflw xmm0, xmm0, 0xD8 \
 __asm pshufhw xmm0, xmm0, 0xD8 \
 __asm pshufd xmm3, xmm0, 0x55 \
 __asm pshufd xmm1, xmm0, 0 \
 __asm pshufd xmm2, xmm0, 0xAA \
 __asm pshufd xmm0, xmm0, 0xFF \
 __asm pmaddwd xmm1, [table1+ 0] \
 __asm pmaddwd xmm2, [table1+16] \
 __asm pmaddwd xmm3, [table1+32] \
 __asm pmaddwd xmm0, [table1+48] \
 __asm paddd xmm0, xmm3 \
 __asm pshuflw xmm4, xmm4, 0xD8 \
 __asm pshufhw xmm4, xmm4, 0xD8 \
 __asm paddd xmm1, rounder1 \
 __asm pshufd xmm6, xmm4, 0xAA \
 __asm pshufd xmm5, xmm4, 0 \
 __asm pmaddwd xmm5, [table2+ 0] \
 __asm paddd xmm5, rounder2 \
 __asm pmaddwd xmm6, [table2+16] \
 __asm pshufd xmm7, xmm4, 0x55 \
 __asm pmaddwd xmm7, [table2+32] \
 __asm pshufd xmm4, xmm4, 0xFF \
 __asm pmaddwd xmm4, [table2+48] \
 __asm paddd xmm1, xmm2 \

 __asm movdqa xmm2, xmm1 \
 __asm psubd xmm2, xmm0 \
 __asm psrad xmm2, SHIFT_INV_ROW \
 __asm pshufd xmm2, xmm2, 0x1B \
 __asm paddd xmm0, xmm1 \
 __asm psrad xmm0, SHIFT_INV_ROW \
 __asm paddd xmm5, xmm6 \
 __asm packssdw xmm0, xmm2 \
 __asm paddd xmm4, xmm7 \
 __asm movdqa xmm6, xmm5 \
 __asm psubd xmm6, xmm4 \
 __asm psrad xmm6, SHIFT_INV_ROW \
 __asm paddd xmm4, xmm5 \
 __asm psrad xmm4, SHIFT_INV_ROW \
 __asm pshufd xmm6, xmm6, 0x1B \
 __asm packssdw xmm4, xmm6

#define DCT_8_INV_COL_8 \
 __asm movdqa xmm6, xmm4 \
 __asm movdqa xmm2, xmm0 \
 __asm movdqa xmm3, XMMWORD PTR [edx+3*16] \
 __asm movdqa xmm1, XMMWORD PTR M128_tg_3_16 \
 __asm pmulhw xmm0, xmm1 \
 __asm movdqa xmm5, XMMWORD PTR M128_tg_1_16 \
 __asm pmulhw xmm1, xmm3 \
 __asm paddsw xmm1, xmm3 \
 __asm pmulhw xmm4, xmm5 \
 __asm movdqa xmm7, XMMWORD PTR [edx+6*16] \
 __asm pmulhw xmm5, [edx+1*16] \
 __asm psubsw xmm5, xmm6 \
 __asm movdqa xmm6, xmm5 \
 __asm paddsw xmm4, [edx+1*16] \
 __asm paddsw xmm0, xmm2 \
 __asm paddsw xmm0, xmm3 \
 __asm psubsw xmm2, xmm1 \
 __asm movdqa xmm1, xmm0 \
 __asm movdqa xmm3, XMMWORD PTR M128_tg_2_16 \
 __asm pmulhw xmm7, xmm3 \
 __asm pmulhw xmm3, [edx+2*16] \
 __asm paddsw xmm0, xmm4 \
 __asm psubsw xmm4, xmm1 \
 __asm movdqa [edx+7*16], xmm0 \
 __asm psubsw xmm5, xmm2 \
 __asm paddsw xmm6, xmm2 \
 __asm movdqa [edx+3*16], xmm6 \
 __asm movdqa xmm1, xmm4 \
 __asm movdqa xmm0, XMMWORD PTR M128_cos_4_16 \
 __asm movdqa xmm2, xmm0 \
 __asm paddsw xmm4, xmm5 \
 __asm psubsw xmm1, xmm5 \
 __asm paddsw xmm7, [edx+2*16] \
 __asm psubsw xmm3, [edx+6*16] \
 __asm movdqa xmm6, [edx] \
 __asm pmulhw xmm0, xmm1 \
 __asm movdqa xmm5, [edx+4*16] \
 __asm paddsw xmm5, xmm6 \
 __asm psubsw xmm6, [edx+4*16] \
 __asm pmulhw xmm2, xmm4 \
 __asm paddsw xmm4, xmm2 \
 __asm movdqa xmm2, xmm5 \
 __asm psubsw xmm2, xmm7 \
 __asm paddsw xmm0, xmm1 \

 __asm paddsw xmm5, xmm7 \
 __asm movdqa xmm1, xmm6 \
 __asm movdqa xmm7, [edx+7*16] \
 __asm paddsw xmm7, xmm5 \
 __asm psraw xmm7, SHIFT_INV_COL \
 __asm movdqa [edx], xmm7 \
 __asm paddsw xmm6, xmm3 \
 __asm psubsw xmm1, xmm3 \
 __asm movdqa xmm7, xmm1 \
 __asm movdqa xmm3, xmm6 \
 __asm paddsw xmm6, xmm4 \
 __asm psraw xmm6, SHIFT_INV_COL \
 __asm movdqa [edx+1*16], xmm6 \
 __asm paddsw xmm1, xmm0 \
 __asm psraw xmm1, SHIFT_INV_COL \
 __asm movdqa [edx+2*16], xmm1 \
 __asm movdqa xmm1, [edx+3*16] \
 __asm movdqa xmm6, xmm1 \
 __asm psubsw xmm7, xmm0 \
 __asm psraw xmm7, SHIFT_INV_COL \
 __asm movdqa [edx+5*16], xmm7 \
 __asm psubsw xmm5, [edx+7*16] \
 __asm psraw xmm5, SHIFT_INV_COL \
 __asm movdqa [edx+7*16], xmm5 \
 __asm psubsw xmm3, xmm4 \
 __asm paddsw xmm6, xmm2 \
 __asm psubsw xmm2, xmm1 \
 __asm psraw xmm6, SHIFT_INV_COL \
 __asm movdqa [edx+3*16], xmm6 \
 __asm psraw xmm2, SHIFT_INV_COL \
 __asm movdqa [edx+4*16], xmm2 \
 __asm psraw xmm3, SHIFT_INV_COL \
 __asm movdqa [edx+6*16], xmm3

#define DEQUANTIZE(reg, mem) __asm pmullw reg, mem

void IDCT_SSE2(const short *coeff, const unsigned short *quant, short *dest) {
 assert_16_byte_aligned(coeff);
 assert_16_byte_aligned(quant);
 assert_16_byte_aligned(dest);

 __asm mov eax, coeff
 __asm mov edx, dest
 __asm mov esi, quant

 __asm movdqa xmm0, XMMWORD PTR[eax+16*0] // row 0
 __asm movdqa xmm4, XMMWORD PTR[eax+16*2] // row 2
 DEQUANTIZE(xmm0, XMMWORD PTR[esi+16*0])
 DEQUANTIZE(xmm4, XMMWORD PTR[esi+16*2])
 DCT_8_INV_ROW(M128_tab_i_04, M128_tab_i_26, rounder_0, rounder_2);
 __asm movdqa XMMWORD PTR[edx+16*0], xmm0
 __asm movdqa XMMWORD PTR[edx+16*2], xmm4

 __asm movdqa xmm0, XMMWORD PTR[eax+16*4] // row 4
 __asm movdqa xmm4, XMMWORD PTR[eax+16*6] // row 6
 DEQUANTIZE(xmm0, XMMWORD PTR[esi+16*4])
 DEQUANTIZE(xmm4, XMMWORD PTR[esi+16*6])
 DCT_8_INV_ROW(M128_tab_i_04, M128_tab_i_26, rounder_4, rounder_6);
 __asm movdqa XMMWORD PTR[edx+16*4], xmm0
 __asm movdqa XMMWORD PTR[edx+16*6], xmm4

 __asm movdqa xmm0, XMMWORD PTR[eax+16*3] // row 3

 __asm movdqa xmm4, XMMWORD PTR[eax+16*1] // row 1
 DEQUANTIZE(xmm0, XMMWORD PTR[esi+16*3])
 DEQUANTIZE(xmm4, XMMWORD PTR[esi+16*1])
 DCT_8_INV_ROW(M128_tab_i_35, M128_tab_i_17, rounder_3, rounder_1);
 __asm movdqa XMMWORD PTR[edx+16*3], xmm0
 __asm movdqa XMMWORD PTR[edx+16*1], xmm4

 __asm movdqa xmm0, XMMWORD PTR[eax+16*5] // row 5
 __asm movdqa xmm4, XMMWORD PTR[eax+16*7] // row 7
 DEQUANTIZE(xmm0, XMMWORD PTR[esi+16*5])
 DEQUANTIZE(xmm4, XMMWORD PTR[esi+16*7])
 DCT_8_INV_ROW(M128_tab_i_35, M128_tab_i_17, rounder_5, rounder_7);

 DCT_8_INV_COL_8
}

Appendix F

/*
 4:2:0 YCoCg -> RGB Conversion
 Copyright (C) 2006 Id Software, Inc.

 This code is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This code is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.
*/

#define NUM_CHANNELS 4

inline ClampByte(int x) { return (x < 0) ? 0 : ((x > 255) ? 255 : x); }

void YCoCgAToRGBA(const short *YCoCgA, byte *rgba, int stride) {
 int i, j, k;

 // writes out one 8*8 block of the 16*16 tile per iteration
 for(k = 0; k < 4; k++) {

 byte *pByte = rgba + ((k & 2) * stride + (k & 1) * (NUM_CHANNELS*2)) * 4;
 const short *py = YCoCgA + k * 64;
 const short *pc = YCoCgA + 256 + ((k & 2) * 4 + (k & 1)) * 4;

 // writes out 2 rows of an 8*8 block per iteration
 for(j = 0; j < 4; j++) {
 for(i = 0; i < 4; i++) {
 int y, co, cg, r, s, t, a;

 co = pc[i+ 0];
 cg = pc[i+64];

 r = co - cg;
 s = cg;
 t = co + cg;

 y = py[i*2+0+0+ 0] + 128;
 a = py[i*2+0+0+384] + 128;

 pByte[i*2*NUM_CHANNELS+0*NUM_CHANNELS+0] = ClampByte(y+r); // Red
 pByte[i*2*NUM_CHANNELS+0*NUM_CHANNELS+1] = ClampByte(y+s); // Green
 pByte[i*2*NUM_CHANNELS+0*NUM_CHANNELS+2] = ClampByte(y-t); // Blue
 pByte[i*2*NUM_CHANNELS+0*NUM_CHANNELS+3] = ClampByte(a); // Alpha

 y = py[i*2+0+1+ 0] + 128;
 a = py[i*2+0+1+384] + 128;

 pByte[i*2*NUM_CHANNELS+1*NUM_CHANNELS+0] = ClampByte(y+r); // Red
 pByte[i*2*NUM_CHANNELS+1*NUM_CHANNELS+1] = ClampByte(y+s); // Green
 pByte[i*2*NUM_CHANNELS+1*NUM_CHANNELS+2] = ClampByte(y-t); // Blue
 pByte[i*2*NUM_CHANNELS+1*NUM_CHANNELS+3] = ClampByte(a); // Alpha

 pByte += stride;

 y = py[i*2+8+0+ 0] + 128;
 a = py[i*2+8+0+384] + 128;

 pByte[i*2*NUM_CHANNELS+0*NUM_CHANNELS+0] = ClampByte(y+r); // Red
 pByte[i*2*NUM_CHANNELS+0*NUM_CHANNELS+1] = ClampByte(y+s); // Green
 pByte[i*2*NUM_CHANNELS+0*NUM_CHANNELS+2] = ClampByte(y-t); // Blue
 pByte[i*2*NUM_CHANNELS+0*NUM_CHANNELS+3] = ClampByte(a); // Alpha

 y = py[i*2+8+1+ 0] + 128;
 a = py[i*2+8+1+384] + 128;

 pByte[i*2*NUM_CHANNELS+1*NUM_CHANNELS+0] = ClampByte(y+r); // Red
 pByte[i*2*NUM_CHANNELS+1*NUM_CHANNELS+1] = ClampByte(y+s); // Green
 pByte[i*2*NUM_CHANNELS+1*NUM_CHANNELS+2] = ClampByte(y-t); // Blue
 pByte[i*2*NUM_CHANNELS+1*NUM_CHANNELS+3] = ClampByte(a); // Alpha

 pByte -= stride;
 }

 py += 16;
 pc += 8;
 pByte += 2 * stride;
 }
 }
}

Appendix G

/*
 MMX Optimized 4:2:0 YCoCg -> RGB Conversion
 Copyright (C) 2006 Id Software, Inc.

 This code is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This code is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.
*/

void YCoCgAToRGBA_MMX(const short *YCoCgA, byte *rgba, int stride) {
 assert(NUM_CHANNELS == 4); // this code assumes four channels per pixel
 assert_16_byte_aligned(rgba);
 assert_16_byte_aligned(YCoCgA);
 assert((stride & 15) == 0);

 ALIGN16(short tmm2[4]);
 ALIGN16(short tmm3[4]);
 ALIGN16(short tmm4[4]);
 ALIGN16(short tmm5[4]);
 ALIGN16(short tmm6[4]);
 ALIGN16(short tmm7[4]);

 __asm {
 xor ecx, ecx // ecx = k
 mov esi, YCoCgA

 // iterates 4 times, writes out one 8*8 block of the 16*16 tile per iteration
 loop1:
 mov eax, ecx
 and eax, 2 // (k & 2)
 mov edx, ecx
 and edx, 1 // (k & 1)

 lea edi, [edx+eax*4]
 shl edi, 3
 add edi, dword ptr [YCoCgA]
 add edi, 256*2 // YCoCgA + (256 + ((k&2) * 4 + (k&1)) * 4) * sizeof(YCoCgA[0])

 imul eax, stride
 lea edx, [eax+edx*(NUM_CHANNELS*2)]
 shl edx, 2
 add edx, dword ptr [rgba] // rgba + ((k&2) * stride + (k&1) * (NUM_CHANNELS*2)) * 4

 mov eax, -4*16*2
 add esi, 4*16*2

 // iterates 4 times, writes out 2 rows of an 8*8 block per iteration
 loop2:
 movq mm4, [edi+ 0*2] // mm4 = co
 movq mm2, [edi+64*2] // mm2 = g = cg

 movq mm3, mm4 // mm3 = co
 psubsw mm3, mm2 // mm3 = r = co - cg
 paddsw mm4, mm2 // mm4 = b = co + cg

 pshufw mm7, mm3, R_SHUFFLE_D(2, 2, 3, 3) // mm7 = r
 pshufw mm6, mm2, R_SHUFFLE_D(2, 2, 3, 3) // mm6 = g
 pshufw mm5, mm4, R_SHUFFLE_D(2, 2, 3, 3) // mm5 = b

 movq tmm7, mm7
 movq tmm6, mm6
 movq tmm5, mm5

 pshufw mm3, mm3, R_SHUFFLE_D(0, 0, 1, 1)
 pshufw mm2, mm2, R_SHUFFLE_D(0, 0, 1, 1)
 pshufw mm4, mm4, R_SHUFFLE_D(0, 0, 1, 1)

 movq tmm3, mm3
 movq tmm2, mm2
 movq tmm4, mm4

 movq mm1, [esi+eax+0*2]
 paddsw mm1, SIMD_MMX_word_128

 paddsw mm3, mm1 // r0, r1, r2, r3 (y + r)
 paddsw mm2, mm1 // g0, g1, g2, g3 (y + g)
 psubsw mm1, mm4 // b0, b1, b2, b3 (y - b)

 packuswb mm3, mm3 // r0, r1, r2, r3, r0, r1, r2, r3
 packuswb mm2, mm2 // g0, g1, g2, g3, g0, g1, g2, g3
 packuswb mm1, mm1 // b0, b1, b2, b3, b0, b1, b2, b3

 movq mm0, [esi+eax+0*2+384*2]
 paddsw mm0, SIMD_MMX_word_128
 packuswb mm0, mm0

 punpcklbw mm1, mm0 // b0, a0, b1, a1, b2, a2, b3, a3
 punpcklbw mm3, mm2 // r0, g0, r1, g1, r2, g2, r3, g3
 movq mm4, mm3 // r0, g0, r1, g1, r2, g2, r3, g3
 punpcklwd mm3, mm1 // r0, g0, b0, a0, r1, g1, b1, a1
 punpckhwd mm4, mm1 // r2, g2, b2, a2, r3, g3, b3, a3

 movq [edx+0], mm3
 movq [edx+8], mm4

 movq mm2, [esi+eax+4*2]
 paddsw mm2, SIMD_MMX_word_128

 paddsw mm7, mm2 // r0, r1, r2, r3 (y + r)
 paddsw mm6, mm2 // g0, g1, g2, g3 (y + b)
 psubsw mm2, mm5 // b0, b1, b2, b3 (y - g)

 packuswb mm7, mm7 // r0, r1, r2, r3, r0, r1, r2, r3
 packuswb mm6, mm6 // g0, g1, g2, g3, g0, g1, g2, g3
 packuswb mm2, mm2 // b0, b1, b2, b3, b0, b1, b2, b3

 movq mm0, [esi+eax+4*2+384*2]
 paddsw mm0, SIMD_MMX_word_128
 packuswb mm0, mm0

 punpcklbw mm2, mm0 // b0, a0, b1, a1, b2, a2, b3, a3
 punpcklbw mm7, mm6 // r0, g0, r1, g1, r2, g2, r3, g3

 movq mm5, mm7 // r0, g0, r1, g1, r2, g2, r3, g3
 punpcklwd mm7, mm2 // r0, g0, b0, a0, r1, g1, b1, a1
 punpckhwd mm5, mm2 // r2, g2, b2, a2, r3, g3, b3, a3

 movq [edx+16], mm7
 movq [edx+24], mm5
 add edx, stride

 movq mm7, tmm7
 movq mm6, tmm6
 movq mm5, tmm5

 movq mm3, tmm3
 movq mm2, tmm2
 movq mm4, tmm4

 movq mm1, [esi+eax+8*2]
 paddsw mm1, SIMD_MMX_word_128

 paddsw mm3, mm1 // r0, r1, r2, r3 (y + r)
 paddsw mm2, mm1 // g0, g1, g2, g3 (y + g)
 psubsw mm1, mm4 // b0, b1, b2, b3 (y - b)

 packuswb mm3, mm3 // r0, r1, r2, r3, r0, r1, r2, r3
 packuswb mm2, mm2 // g0, g1, g2, g3, g0, g1, g2, g3
 packuswb mm1, mm1 // b0, b1, b2, b3, b0, b1, b2, b3

 movq mm0, [esi+eax+8*2+384*2]
 paddsw mm0, SIMD_MMX_word_128
 packuswb mm0, mm0

 punpcklbw mm1, mm0 // b0, a0, b1, a1, b2, a2, b3, a3
 punpcklbw mm3, mm2 // r0, g0, r1, g1, r2, g2, r3, g3
 movq mm4, mm3 // r0, g0, r1, g1, r2, g2, r3, g3
 punpcklwd mm3, mm1 // r0, g0, b0, a0, r1, g1, b1, a1
 punpckhwd mm4, mm1 // r2, g2, b2, a2, r3, g3, b3, a3

 movq [edx+0], mm3
 movq [edx+8], mm4

 movq mm2, [esi+eax+12*2]
 paddsw mm2, SIMD_MMX_word_128

 paddsw mm7, mm2 // r0, r1, r2, r3 (y + r)
 paddsw mm6, mm2 // g0, g1, g2, g3 (y + b)
 psubsw mm2, mm5 // b0, b1, b2, b3 (y - g)

 packuswb mm7, mm7 // r0, r1, r2, r3, r0, r1, r2, r3
 packuswb mm6, mm6 // g0, g1, g2, g3, g0, g1, g2, g3
 packuswb mm2, mm2 // b0, b1, b2, b3, b0, b1, b2, b3

 movq mm0, [esi+eax+12*2+384*2]
 paddsw mm0, SIMD_MMX_word_128
 packuswb mm0, mm0

 punpcklbw mm2, mm0 // b0, a0, b1, a1, b2, a2, b3, a3
 punpcklbw mm7, mm6 // r0, g0, r1, g1, r2, g2, r3, g3
 movq mm5, mm7 // r0, g0, r1, g1, r2, g2, r3, g3
 punpcklwd mm7, mm2 // r0, g0, b0, a0, r1, g1, b1, a1
 punpckhwd mm5, mm2 // r2, g2, b2, a2, r3, g3, b3, a3

 movq [edx+16], mm7

 movq [edx+24], mm5
 add edx, stride

 add edi, 8*2
 add eax, 16*2
 jl loop2

 add ecx, 1
 cmp ecx, 4
 jl loop1

 emms
 }
}

Appendix H

/*
 SSE2 Optimized 4:2:0 YCoCg -> RGB Conversion
 Copyright (C) 2006 Id Software, Inc.

 This code is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This code is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.
*/

void YCoCgAToRGBA_SSE2(const short *YCoCgA, byte *rgba, int stride) {
 assert(NUM_CHANNELS == 4); // this code assumes four channels per pixel
 assert_16_byte_aligned(rgba);
 assert_16_byte_aligned(YCoCgA);
 assert((stride & 15) == 0);

 __asm {
 xor ecx, ecx // ecx = k
 mov esi, YCoCgA

 // iterates 4 times, writes out one 8*8 block of the 16*16 tile per iteration
 loop1:
 mov eax, ecx
 and eax, 2 // (k&2)
 mov edx, ecx
 and edx, 1 // (k&1)

 lea edi, [edx+eax*4]
 shl edi, 3
 add edi, dword ptr [YCoCgA]
 add edi, 256*2 // YCoCgA + (256 + ((k&2) * 4 + (k&1)) * 4) * sizeof(YCoCgA[0])

 imul eax, stride
 lea edx, [eax+edx*(NUM_CHANNELS*2)]
 shl edx, 2
 add edx, dword ptr [rgba] // rgba + ((k&2) * stride + (k&1) * (NUM_CHANNELS*2)) * 4

 mov eax, -4*16*2
 add esi, 4*16*2

 // iterates 4 times, writes out 2 rows of an 8*8 block per iteration
 loop2:
 movq xmm4, qword ptr [edi+ 0*2] // xmm4 = co
 punpcklwd xmm4, xmm4

 movq xmm2, qword ptr [edi+64*2] // xmm2 = g = cg
 punpcklwd xmm2, xmm2

 movdqa xmm3, xmm4 // xmm3 = co
 psubsw xmm3, xmm2 // xmm3 = r = co - cg
 paddsw xmm4, xmm2 // xmm4 = b = co + cg

 movdqa xmm7, xmm3 // xmm7 = r
 movdqa xmm6, xmm2 // xmm6 = g
 movdqa xmm5, xmm4 // xmm5 = b

 movdqa xmm1, qword ptr [esi+eax+0*2]
 paddsw xmm1, SIMD_SSE2_word_128

 paddsw xmm3, xmm1 // r0, r1, r2, r3 (y + r)
 paddsw xmm2, xmm1 // g0, g1, g2, g3 (y + g)
 psubsw xmm1, xmm4 // b0, b1, b2, b3 (y - b)

 packuswb xmm3, xmm3 // r0, r1, r2, r3, r0, r1, r2, r3
 packuswb xmm2, xmm2 // g0, g1, g2, g3, g0, g1, g2, g3
 packuswb xmm1, xmm1 // b0, b1, b2, b3, b0, b1, b2, b3

 movdqa xmm0, qword ptr [esi+eax+0*2+384*2]
 paddsw xmm0, SIMD_SSE2_word_128
 packuswb xmm0, xmm0

 punpcklbw xmm1, xmm0 // b0, a0, b1, a1, b2, a2, b3, a3
 punpcklbw xmm3, xmm2 // r0, g0, r1, g1, r2, g2, r3, g3
 movdqa xmm4, xmm3 // r0, g0, r1, g1, r2, g2, r3, g3
 punpcklwd xmm3, xmm1 // r0, g0, b0, a0, r1, g1, b1, a1
 punpckhwd xmm4, xmm1 // r2, g2, b2, a1, r3, g3, b3, a3

 movdqa [edx+ 0], xmm3
 movdqa [edx+16], xmm4
 add edx, stride

 movdqa xmm2, qword ptr [esi+eax+8*2]
 paddsw xmm2, SIMD_SSE2_word_128

 paddsw xmm7, xmm2 // r0, r1, r2, r3 (y + r)
 paddsw xmm6, xmm2 // g0, g1, g2, g3 (y + g)
 psubsw xmm2, xmm5 // b0, b1, b2, b3 (y - b)

 packuswb xmm7, xmm7 // r0, r1, r2, r3, r0, r1, r2, r3
 packuswb xmm6, xmm6 // g0, g1, g2, g3, g0, g1, g2, g3
 packuswb xmm2, xmm2 // b0, b1, b2, b3, b0, b1, b2, b3

 movdqa xmm0, qword ptr [esi+eax+8*2+384*2]
 paddsw xmm0, SIMD_SSE2_word_128
 packuswb xmm0, xmm0

 punpcklbw xmm2, xmm0 // b0, a0, b1, a1, b2, a1, b3, a3
 punpcklbw xmm7, xmm6 // r0, g0, r1, g1, r2, g2, r3, g3
 movdqa xmm5, xmm7 // r0, g0, r1, g1, r2, g2, r3, g3
 punpcklwd xmm7, xmm2 // r0, g0, b0, a0, r1, g1, b1, a1
 punpckhwd xmm5, xmm2 // r2, g2, b2, a2, r3, g3, b3, a2

 movdqa [edx+ 0], xmm7
 movdqa [edx+16], xmm5
 add edx, stride

 add edi, 8*2
 add eax, 16*2
 jl loop2

 add ecx, 1
 cmp ecx, 4
 jl loop1

 }
}

