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Abstract  

In this article several different lossy compression formats and 
streaming solutions are evaluated for rendering textures from very 

large texture databases. Furthermore a compression format similar to 
JPEG and an SIMD optimized threaded pipeline is introduced to 

achieve high speed streaming of textures.  
 



1. Introduction  
Textures are digitized images drawn onto geometric shapes to add visual detail. In today's 
computer graphics a tremendous amount of detail is mapped onto geometric shapes 
during rasterization. Especially uniquely textured environments require huge amounts of 
texture data. Not only textures with colors are used but also textures specifying surface 
properties like specular reflection or fine surface details in the form of normal or bump 
maps. All these textures can consume large amounts of storage space and bandwidth. 
Fortunately compression can be used to reduce the storage and bandwidth requirements.  

There are compressed texture formats like DXT or S3TC that can be decompressed in 
hardware during rasterization on current graphics cards. However, these formats are 
optimized for decompression in hardware and as such typically do not result in the best 
possible compression ratios. Graphics applications may use vast amounts of texture data 
that is not displayed all at once but streamed from disk as the view point moves or the 
rendered scene changes. Strong compression may be required to deal with such vast 
amounts of texture data to keep storage and bandwidth requirements within acceptable 
limits. As these textures are streamed from disk they have to be decompressed on the fly 
before they can be used for rendering on current graphics cards.  

There are several formats like GIF, PNG and JPEG-LS for lossless compression of 
images. Lossless (reversible) image compression techniques preserve the information so 
that exact reconstruction of the image is possible from the compressed data. In other 
words there is no loss in quality when an image is compressed to one of these formats. 
However, these compression formats typically also do not result in compression ratios 
that are high enough to store vast amounts of texture data.  

In this article several different lossy compression formats and streaming solutions are 
evaluated for rendering textures from very large texture databases. Furthermore a 
compression format similar to JPEG and an SIMD optimized threaded pipeline is 
introduced to achieve high speed streaming of textures.  

 



2. Lossy Color Image Compression Formats  
There are several standardized compression formats available for lossy compression of 
color images. Some well known standards are JPEG, JPEG 2000 and HD Photo.  

2.1 JPEG  

JPEG [1] is a lossy compression format which allows for a wide range of compression 
ratios at the cost of quality. Compression ratios well beyond 20:1 are possible but there 
may be a noticeable loss in quality. In particular JPEG compression may produce 
significant blocking artifacts at higher compression ratios. However, at a 10:1 
compression ratio an image can usually not be distinguished by eye from the original.  

The name JPEG stands for Joint Photographic Experts Group, the name of the joint 
ISO/CCITT committee which created the standard. JPEG was designed specifically to 
discard information that the human eye cannot easily see. Slight changes in color are 
generally not noticeable, while the human eye is much more sensitive to slight changes in 
intensity (light and dark). Furthermore high frequency changes are usually less noticeable 
to the human eye than low frequency changes.  

A JPEG compressor first transforms the color data from the RGB color space to an 
appropriate color space to separate the intensity (luma) from the color information 
(chroma). JPEG uses the YCbCr color space which is the same as the color space used by 
PAL, MAC and Digital color television transmission. The Y component represents the 
luma of a pixel and the components Cb and Cr represent the blue and red chroma 
respectively. Chroma subsampling is often used to improve the compression ratio with 
little loss in quality because the human eye is less sensitive to high frequency chroma 
changes. Typical sampling ratios are 4:4:4 (no downsampling), 4:2:2 (reduce by factor of 
2 in horizontal direction), and most commonly 4:2:0 (reduce by factor of 2 in horizontal 
and vertical directions).  
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The images below show the 256x256 "Lena" image converted to YCbCr with a 4:2:0 
sub-sampling ratio.  



4:2:0 blue chroma (Cb)
drawn to an image. 

Original 256 x 256 "Lena" image. 
 

4:2:0 luma (Y) drawn to an image. 

 

4:2:0 red chroma (Cr) 
drawn to an image. 

Each of the three channels, luma (Y), red chroma (Cr) and blue chroma (Cb), is processed 
individually. A Discrete Cosine Transform (DCT) is used on each 8x8 block of data from 
one of the channels to transform the spatial image data into a frequency map. The 
frequencies represent the average value and successively higher-frequency changes 
within a block. The images below show the frequency data for the "Lena" image after 
conversion to YCbCr with a 4:2:0 sub-sampling ratio.  

4:2:0 blue chroma (Cb)
frequencies drawn to an 
image. 

Original 256 x 256 "Lena" image. 
 

4:2:0 luma (Y) frequencies drawn to an image. 

 

4:2:0 red chroma (Cr) 
frequencies drawn to an 
image. 



The frequency data is then quantized to remove image information that is less noticeable 
to the human eye. Typically high frequency data is diminished while low frequency data 
is maintained. A lot of the high frequency color data can usually be removed before it 
becomes noticeable to the human eye.  

The quantized frequencies are then rearranged to zig-zag order to maximize the length of 
runs of zeros. The least visible coefficients, the ones most likely to be zero-ed, are 
grouped at the end of the sequence. The rearranged and quantized frequencies are 
compressed with an entropy encoder. Typically a simple Huffman encoder combined 
with run-length compression is used for this purpose. The JPEG standard also allows the 
use of Arithmetic coding which is mathematically superior to Huffman coding. However, 
Arithmetic coding is rarely used as it is much slower to encode and decode compared to 
Huffman coding.  

2.2 JPEG 2000  

JPEG 2000 [3, 4] is a Discrete Wavelet Transform (DWT) based image compression 
standard created by the Joint Photographic Experts Group committee with the intention of 
superseding the Discrete Cosine Transform (DCT) based JPEG standard. JPEG 2000 has 
superior compression performance in comparison to the JPEG standard. The compression 
gains over JPEG are attributed to the use of the DWT and a more sophisticated entropy 
encoding scheme.  

A JPEG 2000 compressor first splits the image into tiles, rectangular regions of the image 
that are transformed and encoded separately. The purpose of these tiles is to cope with 
memory limitations. The compressor then transforms the color data in the tiles from the 
RGB color space to the YCbCr color space or uses a Reversible Component Transform 
(RCT) leading to three components. These components are then wavelet transformed 
individually to an arbitrary depth.  

The result of the wavelet transform is a collection of subbands that represent several 
approximation scales. A subband is a set of real coefficients that represent aspects of the 
image associated with a certain frequency range as well as a spatial area of the image. 
These coefficients are subjected to uniform scalar quantization, giving a set of integer 
numbers. These quantized subbands are split further into precincts which are regular non-
overlapping rectangular regions in the wavelet domain. Precincts are split further into 
code-blocks. Except those located at the edges of the image, code-blocks are located in a 
single subband and have equal sizes.  

The encoder has to encode the bits of all quantized coefficients of a code-block, starting 
with the most significant bits and progressing to less significant bits by a process called 
the Embedded Block Coding with Optimal Truncation (EBCOT). In this encoding 
process, each bit-plane of the code-block gets encoded in three so called coding passes, 
first encoding bits of insignificant coefficients with significant neighbors, then refinement 
bits of significant coefficients and finally bits of coefficients without significant 
neighbors. The three passes are called significance propagation, magnitude refinement 



and cleanup pass, respectively. The bits selected by these coding passes then get encoded 
by a context-driven binary arithmetic coder. The context of a coefficient is formed by the 
state of its nine neighbors in the codeblock. The result is a bit-stream that is split into 
packets where a packet groups selected passes of all code-blocks from a precinct into one 
indivisible unit. Packets are the key to scalability where packets containing less 
significant bits can be discarded to achieve lower bit-rates at the cost of quality.  

Although JPEG 2000 produces superior quality compared to JPEG, the gains are modest 
at medium compression ratios (10:1). The improvement is typically much larger at higher 
compression ratios [5] but there may also be a noticeable loss in quality. JPEG 2000 
eliminates some of the compression artifacts introduced by JPEG at higher compression 
ratios, such as blocking artifacts. However, JPEG 2000 can introduce quite prominent 
blurring and ringing artifacts. Furthermore JPEG 2000 decompression is significantly 
more computationally expensive than JPEG decompression and requires more memory 
during decoding.  

2.3 HD Photo  

HD Photo [12] (formerly known as Windows Media Photo) employs a compression 
algorithm optimized for the digital photography market. HD Photo offers image quality 
comparable to JPEG-2000 [13] with computational complexity and memory requirements 
closer to JPEG.  

Images are processed in 16x16 macro blocks, allowing a minimal memory footprint for 
embedded implementations. HD Photo uses the reversible YCoCg-R color space and a 
reversible lapped biorthogonal transform (LBT) based on the Hadamard transform and 
rotation. The transform coefficients are quantized and coefficient prediction and adaptive 
scanning is used before entropy encoding significant bits in several passes.  

The compression algorithm is computationally efficient, and is designed for high 
performance encoding and decoding while minimizing system resource requirements. 
However, even though HD Photo is not as computationally expensive as JPEG-2000, it is 
still a factor slower than JPEG.  



3. Hardware Accelerated Decompression  
Current graphics cards allow several forms of hardware decompression of color images 
by exploiting a GPU, video decoding units or texture units.  

3.1 Inverse DCT on a GPU  

Part of the JPEG decompression algorithm can be implemented in one or more fragment 
programs which can be executed on current GPUs. For instance the inverse Discrete 
Cosine Transform (DCT) can be implemented in fragment programs as shown by nVidia 
[15].  

On a GeForce 6800 doing no other work, the performance of the inverse DCT 
implemented in fragment programs by nVidia is about 134 Mega Pixels per second 
(MP/s). However, the fragment programs only performs the inverse DCT for a grayscale 
image. 1.5 times the amount of work is required to decompress a 4:2:0 JPEG color image, 
which brings the process down to 89 MP/s. Combining the results and converting the 
color space back to RGB further reduces the performance.  

Entropy decoding can typically not be implemented in a fragment program because it is 
not possible to read from a variable length bit stream on current graphics cards. As such 
the entropy decoding has to be done on a CPU and the quantized frequencies have to be 
uploaded to the graphics card. Unfortunately on today's CPUs the most expensive part of 
JPEG decompression is the entropy decoding (mostly due to branching). Even if a fast 
Huffman decoder is used with a lookup table this is typically more expensive than the 
inverse DCT or the color conversion. Furthermore pushing the quantized frequencies to 
the graphics card increases the upload. There is typically more upload bandwidth 
required than used to upload the uncompressed image because the frequencies cannot be 
uploaded as 8-bit texture components.  

The nVidia inverse DCT implementation requires multiple fragment programs and 
multiple rendering passes. This means multiple draw calls which typically does not 
improve the overall performance. Obviously there is a trade between using the CPU and 
GPU. With a lot of Hyper Threaded CPUs out there and a growing base of multi-core 
CPUs, decompressing images on a CPU is usually faster than running a fragment 
program on the GPU because the GPU is typically already taxed with 3D rendering.  



3.2 Hardware Accelerated MPEG Decoding  

Most of today's graphics cards support hardware accelerated MPEG-1 or MPEG-2 
decoding. MPEG-1 and MPEG-2 can be setup to store only I-frames which are close to 
compressed JPEG images. The MPEG decoder on the graphics card can write an MPEG-
1 or MPEG-2 image directly to a texture in memory on the graphics card which can then 
be used for rendering. As such the hardware decoder can be used for general hardware 
accelerated texture decompression.  

Images can be uploaded to the graphics card as MPEG-1 or MPEG-2 files with a single 
or multiple I-frames and they can be decompressed in hardware. During decoding these 
MPEG-1 or MPEG-2 files will also take up memory on the graphics card. Unfortunately 
current drivers are not mature enough to really benefit from hardware accelerated MPEG 
decoding for real-time texture decompression.  

3.3. DXT Compression  

The DXT format, also known as S3TC [16, 17], is designed for real-time decompression 
in hardware on the graphics card during rendering. DXT is a lossy compression format 
with a fixed compression ratio of 4:1 or 6:1. DXT compression is a form of Block 
Truncation Coding (BTC) where an image is divided into non-overlapping blocks and the 
pixels in each block are quantized to a limited number of values. The color values of 
pixels in a 4x4 pixel block are approximated with equidistant points on a line through 
color space. Such a line is defined by two end points and for each pixel in the 4x4 block 
an index is stored to one of the equidistant points on the line. The end points of the line 
through color space are quantized to 16-bit 5:6:5 RGB format and either one or two 
intermediate points are generated through interpolation.  

Most of today's graphics cards support the DXT format in hardware. Unfortunately the 
compression ratio of DXT is only 6:1 for three channel color images and 4:1 for channel 
color images with alpha channel. These compression ratios are generally not good 
enough to store vast amounts of texture data. However, a DXT compressed images can be 
compressed down further by exploiting specific knowledge about the structure of the 
DXT format. Half the data in the DXT1 format is used for RGB colors in 16-bit 5:6:5 
format. For each 4x4 block of pixels there are two such RGB colors that define the end 
points of the line through color space which is used to approximate the colors in the 
block. The other half of the data in the DXT1 format is used to store indices to 
equidistant points on the lines through color space.  

The colors from all the 4x4 blocks can be placed in one or two textures and such textures 
can be compressed with a regular texture compressor like JPEG or HD Photo. The 
indices, however, are much harder to compress. The indices need to be compressed with 
a lossless compressor because noticeable artifacts may occur even if the indices are only 
off by one. A good DXT compressor will typically try to use all points on a line through 
color space to preserve as much detail as possible. As a result compressing the indices 
with an entropy encoder does not work well because the different indices occur at similar 



frequencies. Furthermore the lines through color space can have any orientation in the 
original texture. As a result run-length or LZ-based compression does not work very well 
either because of the randomized nature of the sequences of indices. Only if the original 
texture has a lot of flat areas, or areas with smooth axis aligned color ramps the 
individual indices or sequences of indices will be similar and they will compress well.  

 
First color image. 

256 x 256 "Lena" image compressed 
to DXT1 with the ATI Compressonator. 

 
The indices from the DXT1 format drawn to an 
image. The indices have been remapped to 
natural order on the lines through color space. 
There are some patterns but there is also a lot of 
noise. 

 

 
Second color image.

The compression of the indices can be improved by rotating and/or mirroring the indices 
in each 4x4 block in order to line them up. However, even then the compression ratios are 
still not very impressive (typically below 4:3). In other words it is hard to compress the 
indices for high detail images which also means it is hard to compress a DXT1 
compressed image down to half its original size. Even if the color data would compress 
down to nothing, the indices remain and they consume half the data in the DXT1 format.  

To compress a RGBA image in DXT5 format, the two textures from the DXT1 format 
can be extended with an alpha channel. In the DXT5 format half the data is used for 
colors plus an alpha channel and the other half is used to store indices either to points on 
lines through color space or to points on lines through alpha space. Just like the color 
indices, compressing the indices to points on lines through alpha space does not work 
well for images with a high detail alpha channel.  

Tests using high detail images show that the two color (+alpha) textures can be 
compressed down with a JPEG compressor to about 50 to 40 percent of their DXT 
compressed size with little loss in quality. The indices can be compressed down to about 
90 to 80 percent of their original size. In the best case this results in a compression ratio 
of about 10:1 for three channel color images and 7:1 for four channel color images with 
an alpha channel. Although these compression ratios are reasonable, it is hard to achieve 
these ratios for general images and it is even harder to go up to higher compression ratios. 



At the cost of quality the DXT color data can be compressed down further but any loss in 
quality and compression artifacts are typically magnified by the DXT compression.  

Another issue is that mip maps which are typically used to avoid aliasing artifacts during 
3D rendering either have to be stored and compressed with a full resolution image which 
requires more storage space, or a DXT compressed image has to be decompressed, then 
mip maps have to be generated from the uncompressed DXT and they have to be re-
compressed to DXT format. Creating mip maps from DXT compressed data typically 
produces noticeable artifacts.  



4. DCT Based Compression Format  
A compression format for real-time texture streaming must achieve good compression 
ratios and has to allow the implementation of a fast decompression algorithm on today's 
computers. Evaluation of the above compression formats and decompression solutions 
leads to a compression format very similar to JPEG. Regular JPEG is a free standard and 
very fast implementations of the different sub-routines used for JPEG decompression are 
readily available.  

The compression format presented here is different from JPEG in that it uses the YCoCg 
color space instead of the YCbCr color space. The YCoCg color space was first 
introduced for H.264 video compression [18, 19]. The RGB to YCoCg transform has 
been shown to be capable of achieving a decorrelation that is much better than that 
obtained by various RGB to YCbCr transforms and is very close to that of the KL 
transform when measured for a representative set of high-quality RGB test images [19]. 
Furthermore the transformation from RGB to YCoCg is very simple and requires only 
integer additions and shifts. The following matrix transformation shows the conversion 
from RGB to YCoCg.  

Y = [ ¼  ½ ¼] [R]
Co = [ ½  0 -½] [G]
Cg = [ -¼  ½ -¼] [B]

The compression format presented here uses a sub-sampling ratio of 4:2:0 to achieve high 
compression ratios at a minimal loss in quality.  

4:2:0 
4 2:0 2:0 

Y Co Cg 

 



The images below show the "Lena" image converted to YCoCg with a 4:2:0 sub-
sampling ratio.  

 
4:2:0 orange chroma (Co) 
drawn to an image. 

 
Original 256 x 256 "Lena" image. 

 

 
4:2:0 luma (Y) drawn to an image. 

 

 
4:2:0 green chroma (Cg) 
drawn to an image. 

Just like JPEG each of the three channels, luma (Y), orange chroma (Co) and green 
chroma (Cg), is processed individually. Also just like JPEG a Discrete Cosine Transform 
(DCT) is used on each 8x8 block of data from one of the channels to transform the spatial 
image data into a frequency map. The images below show the frequency data for the 
"Lena" image after conversion to YCoCg with a 4:2:0 sub-sampling ratio.  



 

 
4:2:0 orange chroma (Co)
frequencies drawn to an 
image. 

 
Original 256 x 256 "Lena" image. 

 
4:2:0 luma (Y) frequencies drawn to an image. 

 

 
4:2:0 green chroma (Cg) 
frequencies drawn to an 
image. 

The frequency data is then quantized to remove image information that is less noticeable 
to the human eye. The quantized frequencies are rearranged to zig-zag order and then 
compressed with a simple run-length and Huffman encoder.  



5. Fast Decompression  
A fast decompressor is required for real-time streaming of compressed textures. 
Decompressors for the JPEG format are readily available [20, 21]. The decompressor 
described here for the compression format described in section 4 is very similar to a 
JPEG decompressor.  

Because the color data is stored in 4:2:0 format the decompressor works on tiles of 16x16 
pixels. Such a tile contains one 8x8 block for each of the two chroma components and 
four 8x8 blocks for the luma. There is only one intermediate buffer to which the DCT 
coefficients for one tile are run-length and Huffman decoded. The coefficients are then 
inverse transformed in place in this same buffer. The color space conversion transforms 
YCoCg data from this intermediate buffer to RGB data directly into the destination image 
to minimize the memory footprint during decompression.  

An implementation in C of the decompression of one tile can be found in appendix A. 
This particular implementation decompresses tiles with three color channels and an alpha 
channel. The decompression of the alpha channel can be trivially removed for the 
decompression of images with only three color channels.  

5.1 Run-Length & Huffman Decoding  

An implementation in C of the run-length and Huffman decoding can be found in 
appendix B. The decoder reads run-length and Huffman compressed data from a bit 
stream. SIMD optimized routines are readily available to fetch bits from a bit stream [22]. 
However, the run-length and Huffman decoder presented here does not use SIMD code. 
The decoder presented here is optimized to reduce the number of conditional branches 
and the remaining branches are setup to be more predictable. Conditional branches that 
are hard to predict typically result in numerous mispredictions and significant penalties 
on today's CPUs that implement a deep pipeline [23,24]. When a branch is mispredicted, 
the misprediction penalty is typically equal to the depth of the pipeline.  

Bits are read from the bit stream in the routines 'GetBits' and 'PeekBits'. Both routines 
read bits from an intermediate buffer which may need to be re-filled regularly. This 
intermediate buffer is filled in 'FillBitBuffer'. Filling the bit buffer in 'FillBitBuffer' has 
been made branchless where the last byte of the bit stream is repeated if the decoder tries 
to read beyond the end of the input bit stream.  

Some key observations can be made in the Huffman decoder that allow the removal of 
many conditional branches. First of all the Huffman codes used here are never longer 
than 16 bits. Furthermore by definition Huffman codes for the more frequently occurring 
symbols use fewer bits. In particular most symbols are encoded with 8 or less bits. As 
such two lookup tables are implemented for codes with 8 or less bits. The first lookup 
table 'look_nbits' stores the number of bits for Huffman codes with 8 or less bits. The 
second lookup table 'look_sym' stores the actual symbol for a given bit pattern of 8 bits 
that represents a Huffman code of 8 or less bits. Both lookup tables are indexed with 8 



bits from the input stream. These 8 bits represent either the first 8 bits of a longer 
Huffman code, or a Huffman code of 8 or less bits and possibly additional bits that are 
not part of the Huffman code. For all bit patterns of 8 bits that represent the first 8 bits of 
longer Huffman codes the 'look_nbits' table stores a zero. By testing for a zero in the 
'look_nbits' table the decoder can tell whether or not the first 8 bits read from the input 
stream contain a full Huffman code or a partial Huffman code. For Huffman codes of 8 or 
less bits the bits are removed from the intermediate bit buffer and the actual symbol is 
looked up in the 'look_sym' table.  

Huffman codes with more than 8 bits are decoded in 'DecodeLong'. This routine first 
reads 16 bits for the longest possible Huffman code. Then a fast test is used to determine 
the actual number of bits for the long code. The 16 bits represent a long code of 9 up to 
16 bits which is left justified to 16 bits. This left justified Huffman code is compared to a 
set of constants specific to the given Huffman table, where the actual code has 'n' or more 
bits if the left justified code is larger than or equal to 'test_nbits[n]'. The actual number of 
bits is determined by comparing the left justified code with all constants and 
accumulating the results of the comparisons. Once the actual number of bits is known the 
bits are removed from the intermediate bit buffer. Furthermore a lookup table is used to 
retrieve the symbol for the Huffman code.  

After decoding the category the 'HuffmanDecode' routine reads an offset and calls the 
routine 'ValueFromCategory' to calculate the actual coefficient value from the category 
and offset. This routine has been made branchless without using a lookup table.  

The end result is a run-length and Huffman decoder with small lookup tables and very 
few conditional branches. There are two conditional branches to fill the bit buffer, one in 
'GetBits' and one in 'PeekBits'. There is one conditional branch to switch between 
decoding short and long Huffman codes in 'GetCategory'. There is a loop in 
'DecodeLong' but this loop always executes a fixed number of iterations and can be 
trivially unrolled by the compiler. Furthermore there is one conditional branch for the 
run-length decoding in 'HuffmanDecode'.  

5.2 Inverse DCT  

There are several fast SIMD optimized implementations of the Inverse Discrete Cosine 
Transform (iDCT) available [26, 27, 28]. The iDCT algorithm used here is based on the 
Intel AP922 algorithm [27, 28]. This algorithm is specifically designed to exploit integer 
SIMD architectures while satisfying the precision requirements of the IEEE standard 
1180-1900 [25].  

The AP922 algorithm uses several different rounding and correction techniques to 
counter loss in precision. The AP922 algorithm first operates on rows using 32-bit 
precision, and then on columns using 16-bit precision. The row iDCT uses the MMX / 
SSE2 instruction 'pmaddwd' which calculates the 2D dot product of 16-bit integers and 
stores the result as a 32-bit integer. The results of the dot products are added and right-
shifted to less precision with SHIFT_ROUND_ROW(). A rounder RND_INV_ROW (0.5 



fixed point) is added before shifting down with SHIFT_ROUND_ROW() for proper 
rounding.  

The column iDCT uses the MMX / SSE2 instruction 'pmulhw' which computes  

( a * b ) >> 16.  

This instruction rounds down and as such introduces a bias of -0.5. The AP922 algorithm 
adds corrections in order to counter this bias. At two points a value of one is added and at 
another two points a value of one is subtracted. Furthermore, in two places an 'or' 
instruction is used to set the least significant bit which is statistically equivalent to adding 
0.5. When using a column with only zeros and assuming infinite precision, these 
corrections in the AP922 algorithm accumulate to the following bias values before using 
SHIFT_ROUND_COL().  

row   bias 

0 + 1 

1 + 0.5 + sqrt( 0.5 )

2 - 0.5 - sqrt( 0.5 )

3 - 1 

4 - 1 

5 - 1.5 + sqrt( 0.5 )

6 - 0.5 - sqrt( 0.5 )

7 - 1 

Instead of adding and or-ing values in the column iDCT, these bias values can be 
propagated back through the column iDCT after removing the corrections, and added to 
the same rounders that are used for proper rounding of the row iDCT. Through back 
propagation the following rounders can be derived for BITS_INV_ACC = 4. These 
rounders can be divided by two for the case BITS_INV_ACC = 5.  

row   rounder   

0 - 2048 

1 + 3755 

2 + 2472 

3 + 1361 

4 + 0 

5 - 1139 

6 - 1024 

7 - 1301 

Before doing the shift-right with SHIFT_ROUND_COL() the AP922 algorithm adds 
RND_INV_COL (0.5 fixed point) for proper rounding. This addition can be avoided by 



adding 65536 to the above rounder for the first row. Furthermore the above rounders are 
added in the row iDCT before doing the SHIFT_ROUND_ROW() where the AP922 
algorithm adds RND_INV_ROW for proper rounding of the result of the row iDCT. In 
other words not only the above rounders are added before the SHIFT_ROUND_ROW(), 
but also the original RND_INV_ROW.  

  

row    rounder 

0 RND_INV_ROW - 2048 + 65536

1 RND_INV_ROW + 3755 

2 RND_INV_ROW + 2472 

3 RND_INV_ROW + 1361 

4 RND_INV_ROW + 0 

5 RND_INV_ROW - 1139 

6 RND_INV_ROW - 1024 

7 RND_INV_ROW - 1301 

The end result is the above set of rounders that add 0.5 (fixed point) before right-shifting 
for proper rounding at the end of the row iDCT, add a bias to each row to take care of the 
rounding in the column iDCT, and also add 0.5 (fixed point) before right-shifting for 
proper rounding at the end of the column iDCT. When these rounders are pushed forward 
through SHIFT_ROUND_ROW() and the column iDCT without corrections, this results 
in rounding that is the same as or superior to the rounding of the AP922 algorithm.  

Adding all the rounders in one place does not only improve the precision but also 
simplifies the algorithm by removing several instructions throughout the column iDCT. 
In particular this saves 12 'paddsw' instructions and 4 'por' instructions in the MMX 
implementation and also saves 6 'paddsw' instructions and 2 'por' instructions in the 
SSE2 implementation. The AP922 algorithm has been modified further to perform 
dequantization right before the iDCT without having to temporarily spill the dequantized 
values to memory.  

An implementation in C of the modified AP922 algorithm can be found in appendix C. 
MMX and SSE2 implementations can be found in appendix D and E respectively.  



5.3 Color Space Conversion  

SIMD optimized routines for the conversion from YCbCr to RGB as used by JPEG are 
readily available [29]. The compression format described in section 4, however, does not 
use the YCbCr color space. Instead the YCoCg color space is used which significantly 
reduces the computational complexity. Unlike the conversion from YCbCr to RGB, the 
conversion from YCoCg to RGB uses only addition and subtraction. The following 
matrix transformation shows the conversion from YCoCg to RGB.  

R = [  1   1 -1] [Y] 
G = [  1   0 1] [Co]
B = [  1  -1 -1] [Cg]

This transform can be implemented with as few as two additions and two subtractions as 
shown below.  

t = Y - Cg
R = t + Co 
G = Y + Cg
B = t - Co 

However, the YCoCg color data is stored in 4:2:0 format. In other words there is an 
unique luma value for each pixel and there is one pair of chroma values for each 2x2 
block of pixels. As such the conversion from 4:2:0 YCoCg to RGB is implemented 
differently where for each 2x2 block of pixels a pair of chroma values is converted to 
three values that can be added to each unique luma value. For each block of 2x2 pixels 
the following three variables are calculated.  

r = Co - Cg
s = Cg 
t = Co + Cg

Then for each pixel the RGB values are calculated as follows.  

R = Y + r
G = Y + s
B = Y - t 

An implementation in C of the color conversion can be found in appendix F. This routine 
works on one 8x8 block of a 16x16 tile at a time. For each 8x8 block the routine works 
on two rows at a time. In other words the routine works on rows of 2x2 blocks of pixels. 
The routine also writes out a decompressed alpha channel for RGBA textures. For RGB 
only textures this alpha channel can be trivially removed and a constant value of 255 can 



be written to the destination texture for the alpha channel. The RGBA values are written 
to the destination texture with clamping because the quantization and DCT transform 
may have distorted the YCoCg and alpha values such that the conversion back to RGBA 
results in values that are outside the [0,255] range. MMX and SSE2 implementations can 
be found in appendix G and H respectively.  



6 Mip Mapping & DXT Compression  
Mip maps are pre-filtered collections of downsampled textures that accompany a full 
resolution texture intended to reduce aliasing artifacts during rendering. When streaming 
textures from disk these mip maps can be stored compressed with the full resolution 
textures. Both the full resolution texture and the mip maps can then be streamed from 
disk and decompressed. However, instead of storing and streaming compressed mips 
maps it is usually faster to generate the mip maps from the decompressed full resolution 
texture. Once the full resolution texture is decompressed a simple box filter can used to 
create the mip maps.  

Most of today's graphics cards allow textures to be stored in a variety of compressed 
formats that are decompressed in hardware during rasterization. As previously described 
one such format which is supported by most graphics cards is S3TC also known as DXT 
compression [16, 17]. DXT compressed textures do not only require significantly less 
memory on the graphics card, they generally also render faster than uncompressed 
textures because of reduced bandwidth requirements. Some quality may be lost due to the 
DXT compression. However, when the same amount of memory is used on the graphics 
card there is generally a significant gain in quality.  

The texture streaming solution presented here stores textures in a compression format 
very similar to JPEG. This format cannot be decompressed in hardware during 
rasterization on current graphics cards. However, it may still be desirable to save memory 
on the graphics card and improve the rendering performance by using textures that are 
stored in a compressed format that can be decompressed in hardware during rasterization. 
After streaming and decompressing a texture from disk and generating mip maps, the full 
resolution texture with mip maps can be compressed to DXT format in real-time as 
shown in [30]. On high end systems with more video memory available the high quality 
DXT compression as described in [30] can be used. On systems where video memory and 
performance are of no concern at all, the textures can be used without compression for 
the best visual quality.  



7. Threaded Pipeline  
The texture streaming solution presented here reads data from disk which is then 
decompressed and possibly re-compressed. If this process is serialized all steps in the 
pipeline add up and the throughput is limited by the time it takes to complete all the steps 
in the pipeline. Even with a very fast decompressor things add up and the throughput may 
not be sufficient to stream in detail at a rate which is high enough for high fidelity 
rendering.  

A large texture database typically stores many smaller textures or the textures are broken 
up into many smaller tiles. As such it is possible to run different steps from the texture 
streaming pipeline in parallel as long as each step works on different data. The following 
image shows the full pipeline broken up in four threads going from streaming data from 
disk all the way to up to the graphics driver.  

 

Current graphics drivers can either not be orchestrated from multiple threads or need to 
be synchronized first. As such there is only one thread talking to the graphics driver 
which is the renderer.  

Threading the pipeline does not improve the latency for streaming individual textures. 
However, breaking the pipeline up in threads does significantly improve the throughput 
when continuously streaming texture data. The streaming, decompression and possibly 
re-compression of textures is broken up into two threads. With multi-threading the de-re-
compression time is typically completely hidden by the time it takes to stream 
compressed data from disk because the de-re-compression is usually faster than reading 
data from disk, especially when streaming from a slow DVD drive. While new data is 
being read from disk the de-re-compression thread can decompress and recompress data 
that has already been read. Furthermore the streaming thread does not do a whole lot of 
work and mostly waits for the hard drive or DVD drive. In other words a lot of CPU time 
is available for the decompression thread while the streaming thread is waiting.  



8. Results  
The following images show the original 256x256 "Lena" image and the same image 
compressed with a 10:1 ratio (to 10% of the original size) and a 20:1 ratio (to 5% of the 
original size) using the compression format described in section 4.  

 
original 256x256 "Lena" image 10:1 compressed 256x256 "Lena" image 20:1 compressed 256x256 "Lena" image 

The streaming throughput of the decompressor described in this article is tested and 
compared with several decompressors for JPEG 2000, HD Photo and regular JPEG. The 
"JPEG 2000 JasPer" is version 1.701.0 of the JasPer JPEG 2000 decompressor [6]. This 
decompressor does not use any SIMD optimizations. The "JPEG 2000 OpenJPEG" is 
version 1.0 of the OpenJPEG [7] JPEG 2000 decompressor. Just like JasPer this 
decompressor does not use any SIMD optimizations. The "JPEG 2000 RV-Media" is the 
decompressor from the RV-Media Jpeg2000 SDK 1.0 Beta [8]. The "JPEG 2000 
LeadTools" is the decompressor from the LeadTools Raster Imaging SDK Pro 14.5 [9]. 
The "JPEG 2000 J2K-Codec" is version 1.9 of the J2K-Codec [10] which is an SIMD 
optimized JPEG-2000 decompressor. The "JPEG 2000 Kakadu" is version 5.2.2 of the 
Kakadu JPEG 2000 decompressor [11] which is also SIMD optimized. The "HDPhoto 
.Net" is the HD Photo decompressor that comes with the Microsoft .Net Framework 3.0 
[14]. The "HDPhoto Reference" is the reference implementation for embedded devices 
from the Microsoft DPK 1.0 [12]. The "JPEG IJG" is version 6b of the JPEG 
decompressor from the Independent JPEG Group [20]. This decompressor by default uses 
an integer LL&M iDCT and does not use any SIMD optimizations. The "JPEG IJG x86 
SIMD" is the IJG JPEG library with x86 SIMD extensions by Miyasaka Masaru [21]. 
The "fast DCT" is the decompressor described in this article.  

The different decompressors are tested using the 256x256 "Lena" image compressed at a 
10:1 and a 20:1 ratio and a typical chroma sub-sampling ratio of 4:2:0. For the RGBA 
decompression the blue channel from the "Lena" image is replicated to the alpha channel. 
At a 10:1 compression ratio with 4:2:0 chroma sub-sampling all compressed images 
exhibit very good or comparable quality. At a 20:1 compression ratio all compressed 



images show some visible loss in quality. The images compressed to JPEG 2000 or HD 
Photo typically show less noticeable loss in quality than the images compressed to JPEG 
or the compression format described here. The following table shows the RGB peak 
signal-to-noise ratio (PSNR) for the 10:1 and 20:1 compressed 256x256 "Lena" image 
using the different decompressors (higher = better).  

RGB PSNR 
 

 decompressor  10:1 ratio  20:1 ratio 
 

 JPEG 2000 JasPer   41.6  38.5 
 

 JPEG 2000 OpenJPEG   41.6  38.5 
 

 JPEG 2000 RV-Media   41.6  38.5 
 

 JPEG 2000 LeadTools   41.6  38.5 
 

 JPEG 2000 J2K-Codec   41.4  38.4 
 

 JPEG 2000 Kakadu   41.5  38.5 
 

 HDPhoto .Net   41.4  39.0 
 

 HDPhoto Reference   41.4  39.0 
 

 JPEG IJG   39.9  36.6 
 

 JPEG IJG x86 SIMD   39.9  36.6 
 

 fast DCT (C)   40.1  37.0 
 

 fast DCT (MMX optimized)  40.1  37.0 
 

 fast DCT (SSE2 optimized)  40.1  37.0 

The following tables show the decompression performance of several decompressors in 
MegaPixels per second (MP/s) on an Intel 2.8 GHz dual-core Xeon and an Intel 2.9 GHz 
Core 2 Extreme. The compressed images are decompressed as fast as possible from 
memory without generating mip maps or compression to DXT. The decompression from 
memory is done with hot cache to make the tests reproducible using the same CPUs with 
as little dependencies on the memory subsystem as possible.  

 



Throughput in Mega Pixels per second 
decompressing RGB from memory 

 
    10:1 ratio    20:1 ratio  
 decompressor   MP/s 1   MP/s 2   MP/s 1  MP/s 2 
 JPEG 2000 JasPer   0.55  1.72  0.61 1.92 
 JPEG 2000 OpenJPEG   0.64  1.34  0.72 1.55 
 JPEG 2000 RV-Media   1.05  2.89  1.28 3.56 
 JPEG 2000 LeadTools   2.65  5.96  3.40 7.65 
 JPEG 2000 J2K-Codec   3.58  8.01  4.88 11.05 
 JPEG 2000 Kakadu   3.42  10.53  4.37 15.67 
 HDPhoto .Net   8.60  17.07  10.01 20.24 
 HDPhoto Reference   10.69  18.70  12.52 22.54 
 JPEG IJG   25.37  44.08  30.42 53.14 
 JPEG IJG x86 SIMD   54.45  103.21  67.62 129.12 
 fast DCT (C)   30.74  48.72  34.40 55.21 
 fast DCT (MMX optimized)   70.49  125.24  88.82 170.71 
 fast DCT (SSE2 optimized)   83.44  131.47  117.43 190.14  

Throughput in Mega Pixels per second 
decompressing RGBA from memory 

 
    10:1 ratio   20:1 ratio  
 decompressor  MP/s 1   MP/s 2 MP/s 1  MP/s 2 
 JPEG 2000 JasPer   0.46  1.35 0.50 1.53 
 JPEG 2000 OpenJPEG   0.50  1.02 0.57 1.20 
 JPEG 2000 RV-Media   0.82  2.25 0.94 2.67 
 JPEG 2000 LeadTools   2.02  3.75 2.62 4.59 
 JPEG 2000 J2K-Codec   2.66  5.88 3.67 8.27 
 JPEG 2000 Kakadu   2.29  7.83 3.04 11.76 
 HDPhoto .Net   6.55  11.95 7.72 14.21 
 HDPhoto Reference   7.13  12.75 8.40 15.33 
 JPEG IJG   NA  NA NA NA 
 JPEG IJG x86 SIMD   NA  NA NA NA 
 fast DCT (C)   21.20  33.79 23.95 38.01 
 fast DCT (MMX optimized)   46.81  84.19 60.70 117.31 
 fast DCT (SSE2 optimized)   57.12  90.95 78.75 132.80  

1 Intel 2.8 GHz Dual-Core Xeon ("Paxville" 90nm NetBurst microarchitecture) 
2 Intel 2.9 GHz Core 2 Extreme ("Conroe" 65nm Core 2 microarchitecture) 

The complete streaming solution is tested with a 12× DVD drive, with a peak outer edge 
throughput close to 15 MB/s. Ignoring the seek times, the peak outer edge throughput is 
equivalent to 5.2 RGB MP/s or 3.9 RGBA MP/s when streaming uncompressed texture 
data. The throughput increases significantly when using a 10:1 or 20:1 compression ratio 
and the SSE2 implementation of the decompressor described here. The following tables 
show the peak throughput when streaming and decompressing from the 12× DVD drive 
without using a multi-threaded pipeline.  

Throughput in Mega Pixels per second 
streaming & decompressing RGB from a 12× DVD 

 
    10:1 ratio    20:1 ratio  
 decompressor   MP/s 1   MP/s 2   MP/s 1  MP/s 2 
 JPEG 2000 JasPer   0.54  1.67  0.61 1.89 
 JPEG 2000 OpenJPEG   0.63  1.31  0.72 1.53 
 JPEG 2000 RV-Media   1.03  2.74  1.26 3.44 
 JPEG 2000 LeadTools   2.52  5.35  3.29 7.13 
 JPEG 2000 J2K-Codec   3.35  6.95  4.66 10.00 
 JPEG 2000 Kakadu   3.21  8.77  4.20 13.63 
 HDPhoto .Net   7.39  12.88  9.14 16.97 
 HDPhoto Reference   8.88  13.78  11.18 18.55 
 JPEG IJG   17.10  23.95  23.58 35.27 
 JPEG IJG x86 SIMD   26.71  34.77  41.11 57.87 
 fast DCT (C)   19.38  25.25  25.90 36.17 
 fast DCT (MMX optimized)   30.07  36.96  48.09 64.96 
 fast DCT (SSE2 optimized)   32.20  37.48  55.39 67.59  

Throughput in Mega Pixels per second 
streaming & decompressing RGBA from a 12× DVD 

 
    10:1 ratio   20:1 ratio  
 decompressor  MP/s 1  MP/s 2 MP/s 1 MP/s 2 
 JPEG 2000 JasPer   0.45  1.31 0.50 1.50 
 JPEG 2000 OpenJPEG   0.49  0.99 0.57 1.81 
 JPEG 2000 RV-Media   0.80  2.13 0.93 2.58 
 JPEG 2000 LeadTools   1.92  3.42 2.54 4.34 
 JPEG 2000 J2K-Codec   2.49  5.12 3.51 7.48 
 JPEG 2000 Kakadu   2.16  6.53 2.93 10.23 
 HDPhoto .Net   5.61  9.16 7.03 12.04 
 HDPhoto Reference   6.04  9.63 7.59 12.83 
 JPEG IJG   NA  NA NA NA 
 JPEG IJG x86 SIMD   NA  NA NA NA 
 fast DCT (C)   13.77  18.17 18.36 25.62 
 fast DCT (MMX optimized)   21.37  26.80 34.26 47.08 
 fast DCT (SSE2 optimized)   23.29  27.45 39.35 49.39  

1 Intel 2.8 GHz Dual-Core Xeon ("Paxville" 90nm NetBurst microarchitecture) 
2 Intel 2.9 GHz Core 2 Extreme ("Conroe" 65nm Core 2 microarchitecture) 

 



With a threaded pipeline the throughput increases significantly and the streaming solution 
presented here is typically limited by the DVD throughput as shown in the following 
tables.  

 

Throughput in Mega Pixels per second 
streaming & decompressing RGB from a 12× DVD 

using a threaded pipeline 
 
    10:1 ratio    20:1 ratio  
 decompressor  MP/s 1   MP/s 2    MP/s 1 MP/s 2 
 JPEG 2000 JasPer   0.55  1.72  0.61 1.92 
 JPEG 2000 OpenJPEG   0.64  1.34  0.72 1.55 
 JPEG 2000 RV-Media   1.05  2.89  1.28 3.56 
 JPEG 2000 LeadTools   2.65  5.96  3.40 7.65 
 JPEG 2000 J2K-Codec   3.58  8.01  4.88 11.05 
 JPEG 2000 Kakadu   3.42  10.53  4.37 15.67 
 HDPhoto .Net   8.60  17.07  10.01 20.24 
 HDPhoto Reference   10.69  18.70  12.52 22.54 
 JPEG IJG   25.37  44.08  30.42 53.14 
 JPEG IJG x86 SIMD   52.43  52.43  67.62 104.86 
 fast DCT (C)   30.74  48.72  34.40 55.21 
 fast DCT (MMX optimized)   52.43  52.43  88.82 104.86 
 fast DCT (SSE2 optimized)   52.43  52.43  104.86 104.86  

Throughput in Mega Pixels per second 
streaming & decompressing RGBA from a 12× DVD 

using a threaded pipeline 
 
    10:1 ratio   20:1 ratio  
 decompressor  MP/s 1  MP/s 2 MP/s 1 MP/s 2 
 JPEG 2000 JasPer   0.46  1.35 0.50 1.53 
 JPEG 2000 OpenJPEG   0.50  1.02 0.57 1.20 
 JPEG 2000 RV-Media   0.82  2.25 0.94 2.67 
 JPEG 2000 LeadTools   2.02  3.75 2.62 4.59 
 JPEG 2000 J2K-Codec   2.66  5.88 3.67 8.27 
 JPEG 2000 Kakadu   2.29  7.83 3.04 11.76 
 HDPhoto .Net   6.55  11.95 7.72 14.21 
 HDPhoto Reference   7.13  12.75 8.40 15.33 
 JPEG IJG   NA  NA NA NA 
 JPEG IJG x86 SIMD   NA  NA NA NA 
 fast DCT (C)   21.20  33.79 23.95 38.01 
 fast DCT (MMX optimized)   39.32  39.32 60.70 78.64 
 fast DCT (SSE2 optimized)   39.32  39.32 78.64 78.64  

1 Intel 2.8 GHz Dual-Core Xeon ("Paxville" 90nm NetBurst microarchitecture) 
2 Intel 2.9 GHz Core 2 Extreme ("Conroe" 65nm Core 2 microarchitecture) 

The above tables show that without SIMD optimizations the streaming of texture data 
with a 10:1 or 20:1 compression ratio is limited not by the DVD throughput but by the 
decompressor throughput. However, with SIMD optimizations the throughput is only 
limited by the throughput of the DVD drive and the decompression time is completely 
hidden. At higher compression ratios the streaming performance typically improves. Not 
only are the bandwidth requirements reduced, the decompression becomes faster as well 
because at higher compression ratios an entropy decoder has to decode fewer bits. All 
tests shown here are with the 256x256 "Lena" image. For other images the RGB-PSNR 
may be different when using to the various compression formats. However, the 
performance of the different decompressors is mostly dependent on the compression ratio 
and typically varies very little with different images.  

It is interesting to relate the streaming performance to realistic rendering of a 
walk/run/drive-through over uniquely textured terrain. To simplify the calculations the 
view point is assumed to be moving over a flat terrain and the texture detail is displayed 
in square layers around the view point. Each layer around the view point displays the 
same number of pixels but a lower detail layer is twice the size in world coordinates than 
the higher detail layer directly above it. To render the flat terrain at a decent resolution of 
1024 x 768 or higher, a typical resolution of 2048 x 2048 pixels is used for each square 
layer. If there are five square layers of 2048 x 2048 pixels there are a total of 5 x 2048 x 
2048 pixels (about 21 Mega Pixels) available for rendering at any time. As the view point 



moves the layers have to be updated and essentially rows and columns of pixels have to 
be updated at the side(s) of the square layers in the direction in which the view point 
moves. In the worst case the view point moves along a diagonal and both a row and 
column of pixels need to be updated. Assuming there are four pixels per square inch on 
the highest detail layer, this amounts to 11209 pixels that have to be updated per inch of 
movement along the diagonal.  

The average walking speed for a human is about 3 miles per hour which equals about 53 
inches per second. At this speed about 0.59 mega pixels have to be streamed per second 
to update the texture detail around the view point. A very fast human can run at a speed 
of up to 20 miles per hour which equals about 352 inches per second. At this speed about 
3.95 mega pixels have to be streamed per second. When driving a car at 80 miles per 
hour about 15.78 mega pixels have to be streamed per second. These numbers are for 
rendering a terrain which is completely flat without any elevation. For a terrain with hills 
and mountains the amount of texture detail that needs to be updated can be up to 1.5 
times higher.  

Although the streaming pipeline is threaded, none of the decompressors tested above is 
using multiple threads. During the streaming tests the CPU is doing no other work than 
decompressing data. On single CPU/core systems there is usually only a small percentage 
of the CPU available for texture streaming and decompression because the CPU is 
typically already taxed with other things like rendering. Furthermore mip maps may have 
to be generated for the streamed textures and the textures including mip maps may need 
to be compressed to DXT format which also consumes CPU time. In other words on 
systems with few CPUs/cores it is even more important to use a very fast SIMD 
optimized decompressor in order to stream in texture data at a rate high enough for high 
fidelity rendering.  



9. Conclusion  
On today's computers, especially computers with multiple CPUs or cores, real-time 
streaming of vast amounts of texture data can be achieved by using compression and a 
high performance SIMD optimized decompressor. Furthermore the streaming throughput 
can be improved significantly by using multi-threading to break up the texture streaming 
pipeline into multiple steps that can run in parallel.  

10. Future Work  
As faster CPUs and systems with more CPUs or cores become available it will become 
advantageous to use compression formats that achieve better quality and higher 
compression ratios at the cost of more expensive decompression. As more CPU time 
becomes available compression formats like JPEG 2000 and HD Photo typically achieve 
acceptable quality at higher compression ratios and as such improve the streaming 
throughput as long as the throughput is not limited by the time required for 
decompression.  
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Appendix A  
 
/* 
    Decompression Of One Tile 
    Copyright (C) 2006 Id Software, Inc. 
 
    This code is free software; you can redistribute it and/or 
    modify it under the terms of the GNU Lesser General Public 
    License as published by the Free Software Foundation; either 
    version 2.1 of the License, or (at your option) any later version. 
 
    This code is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU 
    Lesser General Public License for more details. 
*/ 
 
struct HuffmanTable { 
    ... 
}; 
 
HuffmanTable huffTableYDC; 
HuffmanTable huffTableYAC; 
HuffmanTable huffTableCoCgDC; 
HuffmanTable huffTableCoCgAC; 
HuffmanTable huffTableADC; 
HuffmanTable huffTableAAC; 
 
unsigned short quantTableY[]        = { ... }; 
unsigned short quantTableCoCg[]     = { ... }; 
unsigned short quantTableA[]        = { ... }; 
 
int dcY; 
int dcCo; 
int dcCg; 
int dcA; 
 
void DecompressTileRGBA( byte *rgba, int stride ) { 
    ALIGN16( short YCoCgA[10*64] ); 
 
    // Y: 4 blocks, Co: 1 block, Cg: 1 block 
    HuffmanDecode( YCoCgA + 0*64, huffTableYDC, huffTableYAC, &dcY ); 
    HuffmanDecode( YCoCgA + 1*64, huffTableYDC, huffTableYAC, &dcY ); 
    HuffmanDecode( YCoCgA + 2*64, huffTableYDC, huffTableYAC, &dcY ); 
    HuffmanDecode( YCoCgA + 3*64, huffTableYDC, huffTableYAC, &dcY ); 
    HuffmanDecode( YCoCgA + 4*64, huffTableCoCgDC, huffTableCoCgAC, &dcCo ); 
    HuffmanDecode( YCoCgA + 5*64, huffTableCoCgDC, huffTableCoCgAC, &dcCg ); 
 
    // Inverse DCT of YCoCg channels 
    IDCT( YCoCgA + 0*64, quantTableY, YCoCgA + 0*64 ); 
    IDCT( YCoCgA + 1*64, quantTableY, YCoCgA + 1*64 ); 
    IDCT( YCoCgA + 2*64, quantTableY, YCoCgA + 2*64 ); 
    IDCT( YCoCgA + 3*64, quantTableY, YCoCgA + 3*64 ); 
    IDCT( YCoCgA + 4*64, quantTableCoCg, YCoCgA + 4*64 ); 
    IDCT( YCoCgA + 5*64, quantTableCoCg, YCoCgA + 5*64 ); 
 
    // Alpha: 4 blocks 
    HuffmanDecode( YCoCgA + 6*64, huffTableADC, huffTableAAC, &dcA ); 
    HuffmanDecode( YCoCgA + 7*64, huffTableADC, huffTableAAC, &dcA ); 
    HuffmanDecode( YCoCgA + 8*64, huffTableADC, huffTableAAC, &dcA ); 
    HuffmanDecode( YCoCgA + 9*64, huffTableADC, huffTableAAC, &dcA ); 



 
    // Inverse DCT of Alpha channel 
    IDCT( YCoCgA + 6*64, quantTableA, YCoCgA + 6*64 ); 
    IDCT( YCoCgA + 7*64, quantTableA, YCoCgA + 7*64 ); 
    IDCT( YCoCgA + 8*64, quantTableA, YCoCgA + 8*64 ); 
    IDCT( YCoCgA + 9*64, quantTableA, YCoCgA + 9*64 ); 
 
    // Color conversion 
    YCoCgAToRGBA( YCoCgA, rgba, stride ); 
} 

 



Appendix B  
 
/* 
    Run-Length and Huffman Decoding of DCT Coefficients 
    Copyright (C) 2006 Id Software, Inc. 
 
    This code is free software; you can redistribute it and/or 
    modify it under the terms of the GNU Lesser General Public 
    License as published by the Free Software Foundation; either 
    version 2.1 of the License, or (at your option) any later version. 
 
    This code is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU 
    Lesser General Public License for more details. 
*/ 
 
int jpeg_natural_order[64+16]       = { ... }; 
 
const int HUFF_WORD_SIZE    = 8;    // symbol size in bits 
const int HUFF_MAXBITS      = 16;   // maximum number of bits in any code 
const int HUFF_LOOKUPBITS   = 8;    // lookup table for codes with less than this number of bits 
 
struct HuffmanTable { 
    int             minCode[HUFF_MAXBITS+1];                        // minCode[k] is smallest code of length k 
    int             symOffset[HUFF_MAXBITS+1];                     // symOffset[k] is index into symbols[] of 1st symbol of length k 
    unsigned char   symbols[1<<HUFF_WORD_SIZE];         // symbols in order of increasing code length 
    unsigned char   look_nbits[1<<HUFF_LOOKUPBITS];   // number bits for codes with no more than HUFF_LOOKUPBITS bits 
    unsigned char   look_sym[1<<HUFF_LOOKUPBITS];    // symbol for codes with no more than HUFF_LOOKUPBITS bits 
    int             test_nbits[HUFF_MAXBITS];                         // codes left justified to 16 bits larger equal test_nbits[k] have k or more bits 
}; 
 
int getBits; 
int getBuff; 
int dataBytes; 
const byte * data; 
 
void HuffmanDecode( short *coef, const HuffmanTable &dctbl, const HuffmanTable &actbl, int *lastDC ) { 
    int s, k, r, t; 
 
    memset( coef, 0, 64 * sizeof( short ) ); 
 
    s = GetCategory( dctbl );           // get DC category number 
 
    if ( s != 0 ) { 
        r = GetBits( s );               // get offset in this DC category 
        s = ValueFromCategory( s, r );  // get DC difference value 
    } 
 
    s += *lastDC; 
    *lastDC = s; 
 
    coef[0] = (short) s; 
 
    for ( k = 1; k < 64; k++ ) { 
        s = GetCategory( actbl );       // s: (run, category) 
        t = s & 15;                     // t: category for this non-zero AC 
        r = s >> 4;                     // r: run length for zero AC, 0 <= r < 16 



 
        k += r; 
 
        if ( t != 0 ) { 
            r = GetBits( t );                   // get offset in this AC category 
            s = ValueFromCategory( t, r );      // get AC value 
            coef[ jpeg_natural_order[ k ] ] = (short) s; 
        } else { 
            if ( r != 15 ) { 
                break;                          // all the remaining AC values are zero 
            } 
        } 
    }        
} 
 
void FillBitBuffer( void ) { 
    assert( getBits <= 15 ); 
    dataBytes -= 2; 
    int s = ( ~( ( unsigned int ) dataBytes ) ) >> 31; 
    getBuff = ( getBuff << 16 ) | ((int) data[0] << 8) | ((int) data[s]); 
    getBits += 16; 
    data += 2*s;    // repeat last byte if at the end 
} 
 
inline int GetBits( int bits ) { 
    assert( bits <= 16 ); 
    if( getBits < bits ) { 
        FillBitBuffer(); 
    } 
    getBits -= bits; 
    return ( getBuff >> getBits ) & ( ( 1 << bits ) - 1 ); 
} 
 
inline int PeekBits( int bits ) { 
    assert( bits <= 16 ); 
    if( getBits < bits ) { 
        FillBitBuffer(); 
    } 
    return ( getBuff >> ( getBits - bits ) ) & ( ( 1 << bits ) - 1 ); 
} 
 
inline int GetCategory( const HuffmanTable &htbl ) { 
    // Peek the first HUFF_LOOKUPBITS bits. 
    // FillBitBuffer will repeat the last byte when trying to read beyond the end of the stream. 
    // However, the first bits we peek here are still valid and the lookup table will work as intended. 
    int look = PeekBits( HUFF_LOOKUPBITS ); 
 
    // Lookup the number of bits for this Huffman code. 
    int nb = htbl.look_nbits[look]; 
 
    // If this is a huffman code of HUFF_LOOKUPBITS or less bits. 
    if ( nb != 0 ) { 
        getBits -= nb; 
        return htbl.look_sym[look]; 
    } else { 
        // Decode long codes with length >= HUFF_LOOKUPBITS. 
        return DecodeLong( htbl ); 
    } 
} 
 
int DecodeLong( const HuffmanTable &htbl ) { 
    // Peek the maximum number of bits for a code. 



    int look = PeekBits( HUFF_MAXBITS ); 
 
    // Find out how many bits are actually used. 
    int nb = HUFF_LOOKUPBITS + 1; 
    for ( int i = HUFF_LOOKUPBITS + 1; i < HUFF_MAXBITS; i++ ) { 
        int b = ( look >= htbl.test_nbits[i] ); 
        nb += b; 
    } 
 
    getBits -= nb; 
    look >>= HUFF_MAXBITS - nb; 
 
    return htbl.symbols[ htbl.symOffset[nb] + look - htbl.minCode[nb] ]; 
} 
 
inline int ValueFromCategory( int category, int offset ) { 
    // return ((offset) < (1<<((category)-1)) ? (offset) + (((-1)<<(category)) + 1) : (offset)) 
    int m = 1 << category; 
    return offset + ( ( ( offset - ( m >> 1 ) ) >> 31 ) & ( 1 - m ) ); 
} 

 



Appendix C  
 
/* 
    Integer Inverse Discrete Cosine Transform 
    Copyright (C) 2006 Id Software, Inc. 
    Original AP922 algorithm is Copyright (C) 1999 - 2000 Intel Corporation. 
 
    This code is free software; you can redistribute it and/or 
    modify it under the terms of the GNU Lesser General Public 
    License as published by the Free Software Foundation; either 
    version 2.1 of the License, or (at your option) any later version. 
 
    This code is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU 
    Lesser General Public License for more details. 
*/ 
 
#define BITS_INV_ACC            5                           // 4 or 5 for IEEE 
#define SHIFT_INV_ROW           ( 16 - BITS_INV_ACC ) 
#define SHIFT_INV_COL           ( 1 + BITS_INV_ACC ) 
 
#define RND_INV_ROW             1024 * (6 - BITS_INV_ACC)   // 1 << (SHIFT_INV_ROW-1) 
#define RND_INV_COL             16 * (BITS_INV_ACC - 3)     // 1 << (SHIFT_INV_COL-1) 
 
#define SHIFT_ROUND_ROW( x )    ( (x) >> (SHIFT_INV_ROW) ) 
#define SHIFT_ROUND_COL( x )    ( (x) >> (SHIFT_INV_COL) ) 
 
#define BIAS_SCALE( X )         ( X / ( BITS_INV_ACC - 3 ) ) 
 
#define f_tg_1_16               tan( 1.0 * M_PI / 16.0 ) 
#define f_tg_2_16               tan( 2.0 * M_PI / 16.0 ) 
#define f_tg_3_16               tan( 3.0 * M_PI / 16.0 ) 
 
#define f_cos_1_16              cos( 1.0 * M_PI / 16.0 ) 
#define f_cos_2_16              cos( 2.0 * M_PI / 16.0 ) 
#define f_cos_3_16              cos( 3.0 * M_PI / 16.0 ) 
#define f_cos_4_16              cos( 4.0 * M_PI / 16.0 ) 
#define f_cos_5_16              cos( 5.0 * M_PI / 16.0 ) 
#define f_cos_6_16              cos( 6.0 * M_PI / 16.0 ) 
#define f_cos_7_16              cos( 7.0 * M_PI / 16.0 ) 
 
#define FIX16( x )              (unsigned short) (x * (1<<16) + 0.5) 
#define FIX15_COS_1_16( x )     (short) (x * f_cos_1_16 * (1<<15) + 0.5) 
#define FIX15_COS_2_16( x )     (short) (x * f_cos_2_16 * (1<<15) + 0.5) 
#define FIX15_COS_3_16( x )     (short) (x * f_cos_3_16 * (1<<15) + 0.5) 
#define FIX15_COS_4_16( x )     (short) (x * f_cos_4_16 * (1<<15) + 0.5) 
 
const unsigned short tg_1_16    = FIX16( f_tg_1_16 ); 
const unsigned short tg_2_16    = FIX16( f_tg_2_16 ); 
const unsigned short tg_3_16    = FIX16( f_tg_3_16 ); 
const unsigned short cos_4_16   = FIX16( f_cos_4_16 ); 
 
#define INIT_TABLE( FF )                                                \ 
    FF(f_cos_4_16),  FF(f_cos_2_16),  FF(f_cos_4_16),  FF(f_cos_6_16),  \ 
    FF(f_cos_4_16),  FF(f_cos_6_16), -FF(f_cos_4_16), -FF(f_cos_2_16),  \ 
    FF(f_cos_4_16), -FF(f_cos_6_16), -FF(f_cos_4_16),  FF(f_cos_2_16),  \ 
    FF(f_cos_4_16), -FF(f_cos_2_16),  FF(f_cos_4_16), -FF(f_cos_6_16),  \ 



                                                                        \ 
    FF(f_cos_1_16),  FF(f_cos_3_16),  FF(f_cos_5_16),  FF(f_cos_7_16),  \ 
    FF(f_cos_3_16), -FF(f_cos_7_16), -FF(f_cos_1_16), -FF(f_cos_5_16),  \ 
    FF(f_cos_5_16), -FF(f_cos_1_16),  FF(f_cos_7_16),  FF(f_cos_3_16),  \ 
    FF(f_cos_7_16), -FF(f_cos_5_16),  FF(f_cos_3_16), -FF(f_cos_1_16) 
 
static const short tab_i_04[32] = { 
    INIT_TABLE( FIX15_COS_4_16 ) 
}; 
 
static const short tab_i_17[32] = { 
    INIT_TABLE( FIX15_COS_1_16 ) 
}; 
 
static const short tab_i_26[32] = { 
    INIT_TABLE( FIX15_COS_2_16 ) 
}; 
 
static const short tab_i_35[32] = { 
    INIT_TABLE( FIX15_COS_3_16 ) 
}; 
 
static const short *inverseRowTables[] = { 
    tab_i_04, tab_i_17, tab_i_26, tab_i_35, 
    tab_i_04, tab_i_35, tab_i_26, tab_i_17 
}; 
 
static const unsigned int rounder[8] = { 
 RND_INV_ROW - BIAS_SCALE( 2048 ) + 65536, 
 RND_INV_ROW + BIAS_SCALE( 3755 ), 
 RND_INV_ROW + BIAS_SCALE( 2472 ), 
 RND_INV_ROW + BIAS_SCALE( 1361 ), 
 RND_INV_ROW + BIAS_SCALE( 0 ), 
 RND_INV_ROW - BIAS_SCALE( 1139 ), 
 RND_INV_ROW - BIAS_SCALE( 1024 ), 
 RND_INV_ROW - BIAS_SCALE( 1301 ) 
}; 
 
#define PMULHW( X, Y )          ((short)(((int)(X)*(Y))>>16 )) 
#define DEQUANTIZE( X, Q )      ((X)*(Q)) 
 
void IDCT( const short *coeff, const unsigned short *quant, short *dest ) { 
 
    for( int i = 0; i < 8; i++ ) { 
        const short *x = &coeff[ i*8 ]; 
        short *y = &dest[ i*8 ]; 
        const short *w = inverseRowTables[i]; 
 
        short x0 = DEQUANTIZE( x[0], quant[i*8+0] ); 
        short x1 = DEQUANTIZE( x[1], quant[i*8+1] ); 
        short x2 = DEQUANTIZE( x[2], quant[i*8+2] ); 
        short x3 = DEQUANTIZE( x[3], quant[i*8+3] ); 
 
        short x4 = DEQUANTIZE( x[4], quant[i*8+4] ); 
        short x5 = DEQUANTIZE( x[5], quant[i*8+5] ); 
        short x6 = DEQUANTIZE( x[6], quant[i*8+6] ); 
        short x7 = DEQUANTIZE( x[7], quant[i*8+7] ); 
 
        int a0 = x0 * w[ 0] + x2 * w[ 1] + x4 * w[ 2] + x6 * w[ 3]; 
        int a1 = x0 * w[ 4] + x2 * w[ 5] + x4 * w[ 6] + x6 * w[ 7]; 
        int a2 = x0 * w[ 8] + x2 * w[ 9] + x4 * w[10] + x6 * w[11]; 
        int a3 = x0 * w[12] + x2 * w[13] + x4 * w[14] + x6 * w[15]; 



 
        int b0 = x1 * w[16] + x3 * w[17] + x5 * w[18] + x7 * w[19]; 
        int b1 = x1 * w[20] + x3 * w[21] + x5 * w[22] + x7 * w[23]; 
        int b2 = x1 * w[24] + x3 * w[25] + x5 * w[26] + x7 * w[27]; 
        int b3 = x1 * w[28] + x3 * w[29] + x5 * w[30] + x7 * w[31]; 
 
        a0 += rounder[i];                               /* + RND_INV_ROW; */ 
        a1 += rounder[i];                               /* + RND_INV_ROW; */ 
        a2 += rounder[i];                               /* + RND_INV_ROW; */ 
        a3 += rounder[i];                               /* + RND_INV_ROW; */ 
 
        y[0] = SHIFT_ROUND_ROW( a0 + b0 ); 
        y[1] = SHIFT_ROUND_ROW( a1 + b1 ); 
        y[2] = SHIFT_ROUND_ROW( a2 + b2 ); 
        y[3] = SHIFT_ROUND_ROW( a3 + b3 ); 
 
        y[4] = SHIFT_ROUND_ROW( a3 - b3 ); 
        y[5] = SHIFT_ROUND_ROW( a2 - b2 ); 
        y[6] = SHIFT_ROUND_ROW( a1 - b1 ); 
        y[7] = SHIFT_ROUND_ROW( a0 - b0 ); 
    } 
 
    for( int i = 0; i < 8; i++ ) { 
        short *x = &dest[ i ]; 
        short *y = &dest[ i ]; 
 
        short tp765 =   x[1*8] + PMULHW( x[7*8], tg_1_16 ); 
        short tp465 = - x[7*8] + PMULHW( x[1*8], tg_1_16 ); 
        short tm765 =   x[3*8] + PMULHW( x[5*8], tg_3_16 ); 
        short tm465 =   x[5*8] - PMULHW( x[3*8], tg_3_16 ); 
 
        short t7    = tp765 + tm765;                    /* + 1; // correction +1.0 */ 
        short tp65  = tp765 - tm765; 
        short t4    = tp465 + tm465; 
        short tm65  = tp465 - tm465;                    /* + 1; // correction +1.0 */ 
 
        short t6    = PMULHW( tp65 + tm65, cos_4_16 );  /* | 1; // correction +0.5 */ 
        short t5    = PMULHW( tp65 - tm65, cos_4_16 );  /* | 1; // correction +0.5 */ 
 
        short tp03  = x[0*8] + x[4*8]; 
        short tp12  = x[0*8] - x[4*8]; 
 
        short tm03  = PMULHW( x[6*8], tg_2_16 ) + x[2*8]; 
        short tm12  = PMULHW( x[2*8], tg_2_16 ) - x[6*8]; 
 
        short t0    = tp03 + tm03;                      /* + RND_INV_COL; */ 
        short t3    = tp03 - tm03;                      /* + RND_INV_COL - 1; // correction -1.0 */ 
        short t1    = tp12 + tm12;                      /* + RND_INV_COL; */ 
        short t2    = tp12 - tm12;                      /* + RND_INV_COL - 1; // correction -1.0 */ 
 
        y[0*8] = SHIFT_ROUND_COL( t0 + t7 ); 
        y[1*8] = SHIFT_ROUND_COL( t1 + t6 ); 
        y[2*8] = SHIFT_ROUND_COL( t2 + t5 ); 
        y[3*8] = SHIFT_ROUND_COL( t3 + t4 ); 
 
        y[4*8] = SHIFT_ROUND_COL( t3 - t4 ); 
        y[5*8] = SHIFT_ROUND_COL( t2 - t5 ); 
        y[6*8] = SHIFT_ROUND_COL( t1 - t6 ); 
        y[7*8] = SHIFT_ROUND_COL( t0 - t7 ); 
    } 
} 



Appendix D  
 
/* 
    MMX Optimized Integer Inverse Discrete Cosine Transform 
    Copyright (C) 2006 Id Software, Inc. 
    Original AP922 algorithm is Copyright (C) 1999 - 2000 Intel Corporation. 
 
    This code is free software; you can redistribute it and/or 
    modify it under the terms of the GNU Lesser General Public 
    License as published by the Free Software Foundation; either 
    version 2.1 of the License, or (at your option) any later version. 
 
    This code is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU 
    Lesser General Public License for more details. 
*/ 
 
#define __ALIGN8                    __declspec(align(8)) 
 
#define BITS_INV_ACC                5                           // 4 or 5 for IEEE 
#define SHIFT_INV_ROW               16 - BITS_INV_ACC 
#define SHIFT_INV_COL               1 + BITS_INV_ACC 
 
#define RND_INV_ROW                 1024 * (6 - BITS_INV_ACC)   // 1 << (SHIFT_INV_ROW-1) 
#define RND_INV_COL                 16 * (BITS_INV_ACC - 3)     // 1 << (SHIFT_INV_COL-1) 
 
#define DUP2( X )                   (X),(X) 
#define DUP4( X )                   (X),(X),(X),(X) 
#define BIAS_SCALE( X )             ( X / ( BITS_INV_ACC - 3 ) ) 
 
__ALIGN8 static short tg_1_16[4]    = { DUP4(  13036 ) };       // tg * (1<<16) + 0.5f 
__ALIGN8 static short tg_2_16[4]    = { DUP4(  27146 ) };       // tg * (1<<16) + 0.5f 
__ALIGN8 static short tg_3_16[4]    = { DUP4( -21746 ) };       // tg * (1<<16) + 0.5f 
__ALIGN8 static short cos_4_16[4]   = { DUP4( -19195 ) };       // cos * (1<<16) + 0.5f 
 
// Table for rows 0,4 - constants are multiplied on cos_4_16 
__ALIGN8 static short tab_i_04[] = { 
    16384, 21407, 16384, 8867,      // w05 w04 w01 w00 
    16384, 8867, -16384, -21407,    // w07 w06 w03 w02 
    16384, -8867, 16384, -21407,    // w13 w12 w09 w08 
    -16384, 21407, 16384, -8867,    // w15 w14 w11 w10 
    22725, 19266, 19266, -4520,     // w21 w20 w17 w16 
    12873, 4520, -22725, -12873,    // w23 w22 w19 w18 
    12873, -22725, 4520, -12873,    // w29 w28 w25 w24 
    4520, 19266, 19266, -22725      // w31 w30 w27 w26 
}; 
 
// Table for rows 1,7 - constants are multiplied on cos_1_16 
__ALIGN8 static short tab_i_17[] = { 
    22725, 29692, 22725, 12299,     // w05 w04 w01 w00 
    22725, 12299, -22725, -29692,   // w07 w06 w03 w02 
    22725, -12299, 22725, -29692,   // w13 w12 w09 w08 
    -22725, 29692, 22725, -12299,   // w15 w14 w11 w10 
    31521, 26722, 26722, -6270,     // w21 w20 w17 w16 
    17855, 6270, -31521, -17855,    // w23 w22 w19 w18 
    17855, -31521, 6270, -17855,    // w29 w28 w25 w24 
    6270, 26722, 26722, -31521      // w31 w30 w27 w26 
}; 



 
// Table for rows 2,6 - constants are multiplied on cos_2_16 
__ALIGN8 static short tab_i_26[] = { 
    21407, 27969, 21407, 11585,     // w05 w04 w01 w00 
    21407, 11585, -21407, -27969,   // w07 w06 w03 w02 
    21407, -11585, 21407, -27969,   // w13 w12 w09 w08 
    -21407, 27969, 21407, -11585,   // w15 w14 w11 w10 
    29692, 25172, 25172, -5906,     // w21 w20 w17 w16 
    16819, 5906, -29692, -16819,    // w23 w22 w19 w18 
    16819, -29692, 5906, -16819,    // w29 w28 w25 w24 
    5906, 25172, 25172, -29692      // w31 w30 w27 w26 
}; 
 
// Table for rows 3,5 - constants are multiplied on cos_3_16 
__ALIGN8 static short tab_i_35[] = { 
    19266, 25172, 19266, 10426,     // w05 w04 w01 w00 
    19266, 10426, -19266, -25172,   // w07 w06 w03 w02 
    19266, -10426, 19266, -25172,   // w13 w12 w09 w08 
    -19266, 25172, 19266, -10426,   // w15 w14 w11 w10 
    26722, 22654, 22654, -5315,     // w21 w20 w17 w16 
    15137, 5315, -26722, -15137,    // w23 w22 w19 w18 
    15137, -26722, 5315, -15137,    // w29 w28 w25 w24 
    5315, 22654, 22654, -26722      // w31 w30 w27 w26 
}; 
 
__ALIGN8 static const unsigned int rounder_0[2] = { DUP2( RND_INV_ROW - BIAS_SCALE( 2048 ) + 65536 ) }; 
__ALIGN8 static const unsigned int rounder_1[2] = { DUP2( RND_INV_ROW + BIAS_SCALE( 3755 ) ) }; 
__ALIGN8 static const unsigned int rounder_2[2] = { DUP2( RND_INV_ROW + BIAS_SCALE( 2472 ) ) }; 
__ALIGN8 static const unsigned int rounder_3[2] = { DUP2( RND_INV_ROW + BIAS_SCALE( 1361 ) ) }; 
__ALIGN8 static const unsigned int rounder_4[2] = { DUP2( RND_INV_ROW + BIAS_SCALE(    0 ) ) }; 
__ALIGN8 static const unsigned int rounder_5[2] = { DUP2( RND_INV_ROW - BIAS_SCALE( 1139 ) ) }; 
__ALIGN8 static const unsigned int rounder_6[2] = { DUP2( RND_INV_ROW - BIAS_SCALE( 1024 ) ) }; 
__ALIGN8 static const unsigned int rounder_7[2] = { DUP2( RND_INV_ROW - BIAS_SCALE( 1301 ) ) }; 
 
#define DCT_8_INV_ROW( table, rounder ) \ 
    __asm movq      mm2, mm0                                    /* 2: x3 x2 x1 x0*/ \ 
    __asm movq      mm3, qword ptr [table+ 0]            /* 3: w05 w04 w01 w00*/ \ 
    __asm pshufw    mm0, mm0, 10001000b               /* x2 x0 x2 x0*/ \ 
    __asm movq      mm4, qword ptr [table+ 8]           /* 4: w07 w06 w03 w02*/ \ 
    __asm movq      mm5, mm1                                   /* 5: x7 x6 x5 x4*/ \ 
    __asm pmaddwd   mm3, mm0                               /* x2*w05+x0*w04 x2*w01+x0*w00*/ \ 
    __asm movq      mm6, qword ptr [table+32]         /* 6: w21 w20 w17 w16*/ \ 
    __asm pshufw    mm1, mm1, 10001000b             /* x6 x4 x6 x4*/ \ 
    __asm pmaddwd   mm4, mm1                              /* x6*w07+x4*w06 x6*w03+x4*w02*/ \ 
    __asm movq      mm7, qword ptr [table+40]        /* 7: w23 w22 w19 w18*/ \ 
    __asm pshufw    mm2, mm2, 11011101b             /* x3 x1 x3 x1*/ \ 
    __asm pmaddwd   mm6, mm2                             /* x3*w21+x1*w20 x3*w17+x1*w16*/ \ 
    __asm pshufw    mm5, mm5, 11011101b            /* x7 x5 x7 x5*/ \ 
    __asm pmaddwd   mm7, mm5                             /* x7*w23+x5*w22 x7*w19+x5*w18*/ \ 
    __asm paddd     mm3, qword ptr rounder            /* +rounder */ \ 
    __asm pmaddwd   mm0, qword ptr [table+16]    /* x2*w13+x0*w12 x2*w09+x0*w08*/ \ 
    __asm paddd     mm3, mm4                                 /* 4: a1=sum(even1) a0=sum(even0)*/ \ 
    __asm pmaddwd   mm1, qword ptr [table+24]    /* x6*w15+x4*w14 x6*w11+x4*w10*/ \ 
    __asm movq      mm4, mm3                                 /* 4: a1 a0 */ \ 
    __asm pmaddwd   mm2, qword ptr [table+48]     /* x3*w29+x1*w28 x3*w25+x1*w24*/ \ 
    __asm paddd     mm6, mm7                                  /* 7: b1=sum(odd1) b0=sum(odd0)*/ \ 
    __asm pmaddwd   mm5, qword ptr [table+56]     /* x7*w31+x5*w30 x7*w27+x5*w26*/ \ 
    __asm paddd     mm3, mm6                                  /* a1+b1 a0+b0*/ \ 
    __asm paddd     mm0, qword ptr rounder             /* +rounder*/ \ 
    __asm psrad     mm3, SHIFT_INV_ROW            /* y1=a1+b1 y0=a0+b0*/ \ 
    __asm paddd     mm0, mm1                                  /* 1: a3=sum(even3) a2=sum(even2)*/ \ 
    __asm psubd     mm4, mm6                                  /* 6: a1-b1 a0-b0 */ \ 



    __asm movq      mm7, mm0                                 /* 7: a3 a2 */ \ 
    __asm paddd     mm2, mm5                                 /* 5: b3=sum(odd3) b2=sum(odd2)*/ \ 
    __asm paddd     mm0, mm2                                 /* a3+b3 a2+b2*/ \ 
    __asm psrad     mm4, SHIFT_INV_ROW           /* y6=a1-b1 y7=a0-b0*/ \ 
    __asm psubd     mm7, mm2                                 /* 2: a3-b3 a2-b2*/ \ 
    __asm psrad     mm0, SHIFT_INV_ROW          /* y3=a3+b3 y2=a2+b2*/ \ 
    __asm psrad     mm7, SHIFT_INV_ROW          /* y4=a3-b3 y5=a2-b2*/ \ 
    __asm packssdw  mm3, mm0                              /* 0: y3 y2 y1 y0*/ \ 
    __asm packssdw  mm7, mm4                              /* 4: y6 y7 y4 y5*/ \ 
    __asm pshufw    mm7, mm7, 10110001b            /* y7 y6 y5 y4 */ 
 
#define DCT_8_INV_COL_4 \ 
    __asm movq      mm1, qword ptr tg_3_16          /* 1: tg_3_16 */ \ 
    __asm movq      mm2, mm0                                /* 2: x5 */ \ 
    __asm movq      mm3, qword ptr [edx+3*16]     /* 3: x3 */ \ 
    __asm pmulhw    mm0, mm1                              /* x5*tg_3_16 */ \ 
    __asm movq      mm4, qword ptr [edx+7*16]     /* 4: x7 */ \ 
    __asm pmulhw    mm1, mm3                              /* x3*tg_3_16 */ \ 
    __asm movq      mm5, qword ptr tg_1_16          /* 5: tg_1_16 */ \ 
    __asm movq      mm6, mm4                                /* 6: x7 */ \ 
    __asm pmulhw    mm4, mm5                              /* x7*tg_1_16 */ \ 
    __asm paddsw    mm0, mm2                              /* x5*tg_3_16 */ \ 
    __asm pmulhw    mm5, [edx+1*16]                   /* x1*tg_1_16 */ \ 
    __asm paddsw    mm1, mm3                               /* x3*tg_3_16 */ \ 
    __asm movq      mm7, qword ptr [edx+6*16]    /* 7: x6 */ \ 
    __asm paddsw    mm0, mm3                              /* 3: tm765 = x5*tg_3_16+x3 */ \ 
    __asm movq      mm3, qword ptr tg_2_16          /* 3: tg_2_16 */ \ 
    __asm psubsw    mm2, mm1                              /* 1: tm465 = x5-x3*tg_3_16 */ \ 
    __asm pmulhw    mm7, mm3                             /* x6*tg_2_16 */ \ 
    __asm movq      mm1, mm0                               /* 1: tm765 */ \ 
    __asm pmulhw    mm3, [edx+2*16]                   /* x2*tg_2_16 */ \ 
    __asm psubsw    mm5, mm6                               /* 6: tp465 = x1*tg_1_16-x7 */ \ 
    __asm paddsw    mm4, [edx+1*16]                    /* tp765 = x1+x7*tg_1_16 */ \ 
    __asm paddsw    mm0, mm4                               /* t7 = tp765 + tm765 */ \ 
    __asm psubsw    mm4, mm1                               /* 1: tp65 = tp765 - tm765 */ \ 
    __asm paddsw    mm7, [edx+2*16]                    /* tm03 = x2+x6*tg_2_16 */ \ 
    __asm movq      mm6, mm5                                /* 6: tp465 */ \ 
    __asm psubsw    mm3, [edx+6*16]                    /* tm12 = x2*tg_2_16-x6 */ \ 
    __asm psubsw    mm5, mm2                               /* tm65 = tp465 - tm465 */ \ 
    __asm paddsw    mm6, mm2                              /* 2: t4 = tp465 + tm465 */ \ 
    __asm movq      [edx+7*16], mm0                    /* 0: save t7 in y7 (tmp) */ \ 
    __asm movq      mm1, mm4                               /* 1: tp65 */ \ 
    __asm movq      mm2, qword ptr cos_4_16       /* 2: cos_4_16 */ \ 
    __asm paddsw    mm4, mm5                              /* tp65 + tm65 */ \ 
    __asm movq      mm0, qword ptr cos_4_16       /* 0: cos_4_16 */ \ 
    __asm pmulhw    mm2, mm4                            /* (tp65 + tm65)*cos_4_16 */ \ 
    __asm movq      [edx+3*16], mm6                   /* 6: save t4 in y3 (tmp) */ \ 
    __asm psubsw    mm1, mm5                             /* 5: tp65 - tm65 */ \ 
    __asm movq      mm6, [edx]                             /* 6: x0 */ \ 
    __asm pmulhw    mm0, mm1                           /* (tp65 - tm65)*cos_4_16 */ \ 
    __asm movq      mm5, [edx+4*16]                   /* 5: x4 */ \ 
    __asm paddsw    mm4, mm2                            /* 2: t6 = (tp65 + tm65)*cos_4_16 */ \ 
    __asm paddsw    mm5, mm6                           /* tp03 = x0 + x4 */ \ 
    __asm psubsw    mm6, [edx+4*16]                 /* tp12 = x0 - x4 */ \ 
    __asm paddsw    mm0, mm1                           /* 1: t5 = (tp65 - tm65)*cos_4_16 */ \ 
    __asm movq      mm2, mm5                            /* 2: tp03 */ \ 
    __asm paddsw    mm5, mm7                           /* t0 = tp03 + tm03 */ \ 
    __asm movq      mm1, mm6                            /* 1: tp12 */ \ 
    __asm psubsw    mm2, mm7                           /* 7: t3 = tp03 - tm03 */ \ 
    __asm movq      mm7, [edx+7*16]                 /* t7 */ \ 
    __asm paddsw    mm6, mm3                           /* t1 = tp12 + tm12 */ \ 
    __asm paddsw    mm7, mm5                            /* t0 + t7 */ \ 



    __asm psraw     mm7, SHIFT_INV_COL       /* y0 = t0 + t7 */ \ 
    __asm psubsw    mm1, mm3                            /* 3: t2 = tp12 - tm12 */ \ 
    __asm movq      mm3, mm6                             /* 3: t1 */ \ 
    __asm paddsw    mm6, mm4                            /* t1 + t6 */ \ 
    __asm movq      [edx], mm7                            /* 7: save y0 */ \ 
    __asm psraw     mm6, SHIFT_INV_COL       /* y1 = t1 + t6 */ \ 
    __asm movq      mm7, mm1                            /* 7: t2 */ \ 
    __asm paddsw    mm1, mm0                            /* t2 + t5 */ \ 
    __asm movq      [edx+1*16], mm6                  /* 6: save y1 */ \ 
    __asm psraw     mm1, SHIFT_INV_COL       /* y2 = t2 + t5 */ \ 
    __asm movq      mm6, [edx+3*16]                 /* 6: t4 */ \ 
    __asm psubsw    mm7, mm0                           /* 0: t2 - t5 */ \ 
    __asm paddsw    mm6, mm2                           /* t3 + t4 */ \ 
    __asm psubsw    mm2, [edx+3*16]                 /* t3 - t4 */ \ 
    __asm psraw     mm7, SHIFT_INV_COL       /* y5 = t2 - t5 */ \ 
    __asm movq      [edx+2*16], mm1                 /* 1: save y2 */ \ 
    __asm psraw     mm6, SHIFT_INV_COL       /* y3 = t3 + t4 */ \ 
    __asm psubsw    mm5, [edx+7*16]                 /* t0 - t7 */ \ 
    __asm psraw     mm2, SHIFT_INV_COL      /* y4 = t3 - t4 */ \ 
    __asm movq      [edx+3*16], mm6                 /* 6: save y3 */ \ 
    __asm psubsw    mm3, mm4                          /* 4: t1 - t6 */ \ 
    __asm movq      [edx+4*16], mm2                 /* 2: save y4 */ \ 
    __asm psraw     mm3, SHIFT_INV_COL      /* y6 = t1 - t6 */ \ 
    __asm movq      [edx+5*16], mm7                 /* 7: save y5 */ \ 
    __asm psraw     mm5, SHIFT_INV_COL       /* y7 = t0 - t7 */ \ 
    __asm movq      [edx+6*16], mm3                 /* 3: save y6 */ \ 
    __asm movq      [edx+7*16], mm5                 /* 5: save y7 */ 
 
#define DEQUANTIZE( reg, mem )      __asm pmullw reg, mem 
 
void IDCT_MMX( const short *coeff, const unsigned short *quant, short *dest ) { 
    __asm mov       ecx, coeff 
    __asm mov       edx, dest 
    __asm mov       esi, quant 
 
    __asm movq      mm0, [ecx] 
    __asm movq      mm1, [ecx+8] 
    DEQUANTIZE(     mm0, [esi+ 0] ) 
    DEQUANTIZE(     mm1, [esi+ 8] ) 
    DCT_8_INV_ROW( tab_i_04, rounder_0 );           /* row 0 */ 
    __asm movq      mm0, [ecx+16] 
    __asm movq      qword ptr [edx], mm3            /* 3: save y3 y2 y1 y0 */ 
    __asm movq      mm1, [ecx+24] 
    __asm movq      qword ptr [edx+8], mm7          /* 7: save y7 y6 y5 y4 */ 
    DEQUANTIZE(     mm0, [esi+16] ) 
    DEQUANTIZE(     mm1, [esi+24] ) 
    DCT_8_INV_ROW( tab_i_17, rounder_1 );           /* row 1 */ 
    __asm movq      mm0, [ecx+32] 
    __asm movq      qword ptr [edx+16], mm3         /* 3: save y3 y2 y1 y0 */ 
    __asm movq      mm1, [ecx+40] 
    __asm movq      qword ptr [edx+24], mm7         /* 7: save y7 y6 y5 y4 */ 
    DEQUANTIZE(     mm0, [esi+32] ) 
    DEQUANTIZE(     mm1, [esi+40] ) 
    DCT_8_INV_ROW( tab_i_26, rounder_2 );           /* row 2 */ 
    __asm movq      mm0, [ecx+48] 
    __asm movq      qword ptr [edx+32], mm3         /* 3: save y3 y2 y1 y0 */ 
    __asm movq      mm1, [ecx+56] 
    __asm movq      qword ptr [edx+40], mm7         /* 7: save y7 y6 y5 y4 */ 
    DEQUANTIZE(     mm0, [esi+48] ) 
    DEQUANTIZE(     mm1, [esi+56] ) 
    DCT_8_INV_ROW( tab_i_35, rounder_3 );           /* row 3 */ 
    __asm movq      mm0, [ecx+64] 



    __asm movq      qword ptr [edx+48], mm3         /* 3: save y3 y2 y1 y0 */ 
    __asm movq      mm1, [ecx+72] 
    __asm movq      qword ptr [edx+56], mm7         /* 7: save y7 y6 y5 y4 */ 
    DEQUANTIZE(     mm0, [esi+64] ) 
    DEQUANTIZE(     mm1, [esi+72] ) 
    DCT_8_INV_ROW( tab_i_04, rounder_4 );           /* row 4 */ 
    __asm movq      mm0, [ecx+80] 
    __asm movq      qword ptr [edx+64], mm3         /* 3: save y3 y2 y1 y0 */ 
    __asm movq      mm1, [ecx+88] 
    __asm movq      qword ptr [edx+72], mm7         /* 7: save y7 y6 y5 y4 */ 
    DEQUANTIZE(     mm0, [esi+80] ) 
    DEQUANTIZE(     mm1, [esi+88] ) 
    DCT_8_INV_ROW( tab_i_35, rounder_5 );           /* row 5 */ 
    __asm movq      mm0, [ecx+96] 
    __asm movq      qword ptr [edx+80], mm3         /* 3: save y3 y2 y1 y0 */ 
    __asm movq      mm1, [ecx+104] 
    __asm movq      qword ptr [edx+88], mm7         /* 7: save y7 y6 y5 y4 */ 
    DEQUANTIZE(     mm0, [esi+96] ) 
    DEQUANTIZE(     mm1, [esi+104] ) 
    DCT_8_INV_ROW( tab_i_26, rounder_6 );           /* row 6 */ 
    __asm movq      mm0, [ecx+112] 
    __asm movq      qword ptr [edx+96], mm3         /* 3: save y3 y2 y1 y0 */ 
    __asm movq      mm1, [ecx+120] 
    __asm movq      qword ptr [edx+104],mm7         /* 7: save y7 y6 y5 y4 */ 
    DEQUANTIZE(     mm0, [esi+112] ) 
    DEQUANTIZE(     mm1, [esi+120] ) 
    DCT_8_INV_ROW( tab_i_17, rounder_7 );           /* row 7 */ 
    __asm movq      qword ptr [edx+112],mm3         /* 3: save y3 y2 y1 y0 */ 
    __asm movq      mm0, qword ptr [edx+80]         /* 0: x5 */ 
    __asm movq      qword ptr [edx+120],mm7         /* 7: save y7 y6 y5 y4 */ 
 
    DCT_8_INV_COL_4 
    __asm movq      mm0, qword ptr [edx+88]         /* 0: x5 */ 
    __asm add       edx, 8 
    DCT_8_INV_COL_4 
    __asm emms 
} 

 



Appendix E  
 
/* 
    SSE2 Optimized Integer Inverse Discrete Cosine Transform 
    Copyright (C) 2006 Id Software, Inc. 
    Original AP922 algorithm is Copyright (C) 1999 - 2000 Intel Corporation. 
 
    This code is free software; you can redistribute it and/or 
    modify it under the terms of the GNU Lesser General Public 
    License as published by the Free Software Foundation; either 
    version 2.1 of the License, or (at your option) any later version. 
 
    This code is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU 
    Lesser General Public License for more details. 
*/ 
 
#define __ALIGN16                       __declspec(align(16)) 
 
#define BITS_INV_ACC                    5                           // 4 or 5 for IEEE 
#define SHIFT_INV_ROW                   16 - BITS_INV_ACC 
#define SHIFT_INV_COL                   1 + BITS_INV_ACC 
 
#define RND_INV_ROW                     1024 * (6 - BITS_INV_ACC)   // 1 << (SHIFT_INV_ROW-1) 
#define RND_INV_COL                     16 * (BITS_INV_ACC - 3)     // 1 << (SHIFT_INV_COL-1) 
 
#define DUP4( X )                       (X),(X),(X),(X) 
#define DUP8( X )                       (X),(X),(X),(X),(X),(X),(X),(X) 
#define BIAS_SCALE( X )                 ( X / ( BITS_INV_ACC - 3 ) ) 
 
__ALIGN16 static short M128_tg_1_16[8]  = { DUP8(  13036 ) };       // tg * (1<<16) + 0.5 
__ALIGN16 static short M128_tg_2_16[8]  = { DUP8(  27146 ) };       // tg * (1<<16) + 0.5 
__ALIGN16 static short M128_tg_3_16[8]  = { DUP8( -21746 ) };       // tg * (1<<16) + 0.5 
__ALIGN16 static short M128_cos_4_16[8] = { DUP8( -19195 ) };       // cos * (1<<16) + 0.5 
 
//----------------------------------------------------------------------------- 
 
// Table for rows 0,4 - constants are multiplied on cos_4_16 
__ALIGN16 static short M128_tab_i_04[] = { 
    16384,  21407,  16384,  8867,       // w05 w04 w01 w00 
    16384,  -8867,  16384,  -21407,     // w13 w12 w09 w08 
    16384,  8867,   -16384, -21407,     // w07 w06 w03 w02 
    -16384, 21407,  16384,  -8867,      // w15 w14 w11 w10 
    22725,  19266,  19266,  -4520,      // w21 w20 w17 w16 
    12873,  -22725, 4520,   -12873,     // w29 w28 w25 w24 
    12873,  4520,   -22725, -12873,     // w23 w22 w19 w18 
    4520,   19266,  19266,  -22725      // w31 w30 w27 w26 
}; 
 
// Table for rows 1,7 - constants are multiplied on cos_1_16 
__ALIGN16 static short M128_tab_i_17[] = { 
    22725,  29692,  22725,  12299,      // w05 w04 w01 w00 
    22725,  -12299, 22725,  -29692,     // w13 w12 w09 w08 
    22725,  12299,  -22725, -29692,     // w07 w06 w03 w02 
    -22725, 29692,  22725,  -12299,     // w15 w14 w11 w10 
    31521,  26722,  26722,  -6270,      // w21 w20 w17 w16 
    17855,  -31521, 6270,   -17855,     // w29 w28 w25 w24 



    17855,  6270,   -31521, -17855,     // w23 w22 w19 w18 
    6270,   26722,  26722,  -31521      // w31 w30 w27 w26 
}; 
 
// Table for rows 2,6 - constants are multiplied on cos_2_16 
__ALIGN16 static short M128_tab_i_26[] = { 
    21407,  27969,  21407,  11585,      // w05 w04 w01 w00 
    21407,  -11585, 21407,  -27969,     // w13 w12 w09 w08 
    21407,  11585,  -21407, -27969,     // w07 w06 w03 w02 
    -21407, 27969,  21407,  -11585,     // w15 w14 w11 w10 
    29692,  25172,  25172,  -5906,      // w21 w20 w17 w16 
    16819,  -29692, 5906,   -16819,     // w29 w28 w25 w24 
    16819,  5906,   -29692, -16819,     // w23 w22 w19 w18 
    5906,   25172,  25172,  -29692      // w31 w30 w27 w26 
}; 
 
// Table for rows 3,5 - constants are multiplied on cos_3_16 
__ALIGN16 static short M128_tab_i_35[] = { 
    19266,  25172,  19266,  10426,      // w05 w04 w01 w00 
    19266,  -10426, 19266,  -25172,     // w13 w12 w09 w08 
    19266,  10426,  -19266, -25172,     // w07 w06 w03 w02 
    -19266, 25172,  19266,  -10426,     // w15 w14 w11 w10 
    26722,  22654,  22654,  -5315,      // w21 w20 w17 w16 
    15137,  -26722, 5315,   -15137,     // w29 w28 w25 w24 
    15137,  5315,   -26722, -15137,     // w23 w22 w19 w18 
    5315,   22654,  22654,  -26722      // w31 w30 w27 w26 
}; 
 
__ALIGN16 static const unsigned int rounder_0[4] = { DUP4( RND_INV_ROW - BIAS_SCALE( 2048 ) + 65536 ) }; 
__ALIGN16 static const unsigned int rounder_1[4] = { DUP4( RND_INV_ROW + BIAS_SCALE( 3755 ) ) }; 
__ALIGN16 static const unsigned int rounder_2[4] = { DUP4( RND_INV_ROW + BIAS_SCALE( 2472 ) ) }; 
__ALIGN16 static const unsigned int rounder_3[4] = { DUP4( RND_INV_ROW + BIAS_SCALE( 1361 ) ) }; 
__ALIGN16 static const unsigned int rounder_4[4] = { DUP4( RND_INV_ROW + BIAS_SCALE(    0 ) ) }; 
__ALIGN16 static const unsigned int rounder_5[4] = { DUP4( RND_INV_ROW - BIAS_SCALE( 1139 ) ) }; 
__ALIGN16 static const unsigned int rounder_6[4] = { DUP4( RND_INV_ROW - BIAS_SCALE( 1024 ) ) }; 
__ALIGN16 static const unsigned int rounder_7[4] = { DUP4( RND_INV_ROW - BIAS_SCALE( 1301 ) ) }; 
 
#define DCT_8_INV_ROW( table1, table2, rounder1, rounder2 )             \ 
    __asm   pshuflw     xmm0, xmm0, 0xD8                                \ 
    __asm   pshufhw     xmm0, xmm0, 0xD8                                \ 
    __asm   pshufd      xmm3, xmm0, 0x55                                \ 
    __asm   pshufd      xmm1, xmm0, 0                                   \ 
    __asm   pshufd      xmm2, xmm0, 0xAA                                \ 
    __asm   pshufd      xmm0, xmm0, 0xFF                                \ 
    __asm   pmaddwd     xmm1, [table1+ 0]                               \ 
    __asm   pmaddwd     xmm2, [table1+16]                               \ 
    __asm   pmaddwd     xmm3, [table1+32]                               \ 
    __asm   pmaddwd     xmm0, [table1+48]                               \ 
    __asm   paddd       xmm0, xmm3                                      \ 
    __asm   pshuflw     xmm4, xmm4, 0xD8                                \ 
    __asm   pshufhw     xmm4, xmm4, 0xD8                                \ 
    __asm   paddd       xmm1, rounder1                                  \ 
    __asm   pshufd      xmm6, xmm4, 0xAA                                \ 
    __asm   pshufd      xmm5, xmm4, 0                                   \ 
    __asm   pmaddwd     xmm5, [table2+ 0]                               \ 
    __asm   paddd       xmm5, rounder2                                  \ 
    __asm   pmaddwd     xmm6, [table2+16]                               \ 
    __asm   pshufd      xmm7, xmm4, 0x55                                \ 
    __asm   pmaddwd     xmm7, [table2+32]                               \ 
    __asm   pshufd      xmm4, xmm4, 0xFF                                \ 
    __asm   pmaddwd     xmm4, [table2+48]                               \ 
    __asm   paddd       xmm1, xmm2                                      \ 



    __asm   movdqa      xmm2, xmm1                                      \ 
    __asm   psubd       xmm2, xmm0                                      \ 
    __asm   psrad       xmm2, SHIFT_INV_ROW                             \ 
    __asm   pshufd      xmm2, xmm2, 0x1B                                \ 
    __asm   paddd       xmm0, xmm1                                      \ 
    __asm   psrad       xmm0, SHIFT_INV_ROW                             \ 
    __asm   paddd       xmm5, xmm6                                      \ 
    __asm   packssdw    xmm0, xmm2                                      \ 
    __asm   paddd       xmm4, xmm7                                      \ 
    __asm   movdqa      xmm6, xmm5                                      \ 
    __asm   psubd       xmm6, xmm4                                      \ 
    __asm   psrad       xmm6, SHIFT_INV_ROW                             \ 
    __asm   paddd       xmm4, xmm5                                      \ 
    __asm   psrad       xmm4, SHIFT_INV_ROW                             \ 
    __asm   pshufd      xmm6, xmm6, 0x1B                                \ 
    __asm   packssdw    xmm4, xmm6 
 
#define DCT_8_INV_COL_8                                                 \ 
    __asm   movdqa      xmm6, xmm4                                      \ 
    __asm   movdqa      xmm2, xmm0                                      \ 
    __asm   movdqa      xmm3, XMMWORD PTR [edx+3*16]                    \ 
    __asm   movdqa      xmm1, XMMWORD PTR M128_tg_3_16                  \ 
    __asm   pmulhw      xmm0, xmm1                                      \ 
    __asm   movdqa      xmm5, XMMWORD PTR M128_tg_1_16                  \ 
    __asm   pmulhw      xmm1, xmm3                                      \ 
    __asm   paddsw      xmm1, xmm3                                      \ 
    __asm   pmulhw      xmm4, xmm5                                      \ 
    __asm   movdqa      xmm7, XMMWORD PTR [edx+6*16]                    \ 
    __asm   pmulhw      xmm5, [edx+1*16]                                \ 
    __asm   psubsw      xmm5, xmm6                                      \ 
    __asm   movdqa      xmm6, xmm5                                      \ 
    __asm   paddsw      xmm4, [edx+1*16]                                \ 
    __asm   paddsw      xmm0, xmm2                                      \ 
    __asm   paddsw      xmm0, xmm3                                      \ 
    __asm   psubsw      xmm2, xmm1                                      \ 
    __asm   movdqa      xmm1, xmm0                                      \ 
    __asm   movdqa      xmm3, XMMWORD PTR M128_tg_2_16                  \ 
    __asm   pmulhw      xmm7, xmm3                                      \ 
    __asm   pmulhw      xmm3, [edx+2*16]                                \ 
    __asm   paddsw      xmm0, xmm4                                      \ 
    __asm   psubsw      xmm4, xmm1                                      \ 
    __asm   movdqa      [edx+7*16],  xmm0                               \ 
    __asm   psubsw      xmm5, xmm2                                      \ 
    __asm   paddsw      xmm6, xmm2                                      \ 
    __asm   movdqa      [edx+3*16],  xmm6                               \ 
    __asm   movdqa      xmm1, xmm4                                      \ 
    __asm   movdqa      xmm0, XMMWORD PTR M128_cos_4_16                 \ 
    __asm   movdqa      xmm2, xmm0                                      \ 
    __asm   paddsw      xmm4, xmm5                                      \ 
    __asm   psubsw      xmm1, xmm5                                      \ 
    __asm   paddsw      xmm7, [edx+2*16]                                \ 
    __asm   psubsw      xmm3, [edx+6*16]                                \ 
    __asm   movdqa      xmm6, [edx]                                     \ 
    __asm   pmulhw      xmm0, xmm1                                      \ 
    __asm   movdqa      xmm5, [edx+4*16]                                \ 
    __asm   paddsw      xmm5, xmm6                                      \ 
    __asm   psubsw      xmm6, [edx+4*16]                                \ 
    __asm   pmulhw      xmm2, xmm4                                      \ 
    __asm   paddsw      xmm4, xmm2                                      \ 
    __asm   movdqa      xmm2, xmm5                                      \ 
    __asm   psubsw      xmm2, xmm7                                      \ 
    __asm   paddsw      xmm0, xmm1                                      \ 



    __asm   paddsw      xmm5, xmm7                                      \ 
    __asm   movdqa      xmm1, xmm6                                      \ 
    __asm   movdqa      xmm7, [edx+7*16]                                \ 
    __asm   paddsw      xmm7, xmm5                                      \ 
    __asm   psraw       xmm7, SHIFT_INV_COL                             \ 
    __asm   movdqa      [edx], xmm7                                     \ 
    __asm   paddsw      xmm6, xmm3                                      \ 
    __asm   psubsw      xmm1, xmm3                                      \ 
    __asm   movdqa      xmm7, xmm1                                      \ 
    __asm   movdqa      xmm3, xmm6                                      \ 
    __asm   paddsw      xmm6, xmm4                                      \ 
    __asm   psraw       xmm6, SHIFT_INV_COL                             \ 
    __asm   movdqa      [edx+1*16], xmm6                                \ 
    __asm   paddsw      xmm1, xmm0                                      \ 
    __asm   psraw       xmm1, SHIFT_INV_COL                             \ 
    __asm   movdqa      [edx+2*16],  xmm1                               \ 
    __asm   movdqa      xmm1, [edx+3*16]                                \ 
    __asm   movdqa      xmm6, xmm1                                      \ 
    __asm   psubsw      xmm7, xmm0                                      \ 
    __asm   psraw       xmm7, SHIFT_INV_COL                             \ 
    __asm   movdqa      [edx+5*16],  xmm7                               \ 
    __asm   psubsw      xmm5, [edx+7*16]                                \ 
    __asm   psraw       xmm5, SHIFT_INV_COL                             \ 
    __asm   movdqa      [edx+7*16], xmm5                                \ 
    __asm   psubsw      xmm3, xmm4                                      \ 
    __asm   paddsw      xmm6, xmm2                                      \ 
    __asm   psubsw      xmm2, xmm1                                      \ 
    __asm   psraw       xmm6, SHIFT_INV_COL                             \ 
    __asm   movdqa      [edx+3*16],  xmm6                               \ 
    __asm   psraw       xmm2, SHIFT_INV_COL                             \ 
    __asm   movdqa      [edx+4*16],  xmm2                               \ 
    __asm   psraw       xmm3, SHIFT_INV_COL                             \ 
    __asm   movdqa      [edx+6*16],  xmm3 
 
#define DEQUANTIZE( reg, mem )      __asm pmullw reg, mem 
 
void IDCT_SSE2( const short *coeff, const unsigned short *quant, short *dest ) { 
    assert_16_byte_aligned( coeff ); 
    assert_16_byte_aligned( quant ); 
    assert_16_byte_aligned( dest ); 
 
    __asm mov           eax, coeff 
    __asm mov           edx, dest 
    __asm mov           esi, quant 
 
    __asm movdqa        xmm0, XMMWORD PTR[eax+16*0]         // row 0 
    __asm movdqa        xmm4, XMMWORD PTR[eax+16*2]         // row 2 
    DEQUANTIZE(         xmm0, XMMWORD PTR[esi+16*0] ) 
    DEQUANTIZE(         xmm4, XMMWORD PTR[esi+16*2] ) 
    DCT_8_INV_ROW( M128_tab_i_04, M128_tab_i_26, rounder_0, rounder_2 ); 
    __asm movdqa        XMMWORD PTR[edx+16*0],  xmm0 
    __asm movdqa        XMMWORD PTR[edx+16*2],  xmm4 
 
    __asm movdqa        xmm0, XMMWORD PTR[eax+16*4]         // row 4 
    __asm movdqa        xmm4, XMMWORD PTR[eax+16*6]         // row 6 
    DEQUANTIZE(         xmm0, XMMWORD PTR[esi+16*4] ) 
    DEQUANTIZE(         xmm4, XMMWORD PTR[esi+16*6] ) 
    DCT_8_INV_ROW( M128_tab_i_04, M128_tab_i_26, rounder_4, rounder_6 ); 
    __asm movdqa        XMMWORD PTR[edx+16*4],  xmm0 
    __asm movdqa        XMMWORD PTR[edx+16*6],  xmm4 
 
    __asm movdqa        xmm0, XMMWORD PTR[eax+16*3]         // row 3 



    __asm movdqa        xmm4, XMMWORD PTR[eax+16*1]         // row 1 
    DEQUANTIZE(         xmm0, XMMWORD PTR[esi+16*3] ) 
    DEQUANTIZE(         xmm4, XMMWORD PTR[esi+16*1] ) 
    DCT_8_INV_ROW( M128_tab_i_35, M128_tab_i_17, rounder_3, rounder_1 ); 
    __asm movdqa        XMMWORD PTR[edx+16*3],  xmm0 
    __asm movdqa        XMMWORD PTR[edx+16*1],  xmm4 
 
    __asm movdqa        xmm0, XMMWORD PTR[eax+16*5]         // row 5 
    __asm movdqa        xmm4, XMMWORD PTR[eax+16*7]         // row 7 
    DEQUANTIZE(         xmm0, XMMWORD PTR[esi+16*5] ) 
    DEQUANTIZE(         xmm4, XMMWORD PTR[esi+16*7] ) 
    DCT_8_INV_ROW( M128_tab_i_35, M128_tab_i_17, rounder_5, rounder_7 ); 
 
    DCT_8_INV_COL_8 
} 

 



Appendix F  
 
/* 
    4:2:0 YCoCg -> RGB Conversion 
    Copyright (C) 2006 Id Software, Inc. 
 
    This code is free software; you can redistribute it and/or 
    modify it under the terms of the GNU Lesser General Public 
    License as published by the Free Software Foundation; either 
    version 2.1 of the License, or (at your option) any later version. 
 
    This code is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU 
    Lesser General Public License for more details. 
*/ 
 
#define NUM_CHANNELS                4 
 
inline ClampByte( int x )           { return ( x < 0 ) ? 0 : ( ( x > 255 ) ? 255 : x ); } 
 
void YCoCgAToRGBA( const short *YCoCgA, byte *rgba, int stride ) { 
    int i, j, k; 
 
    // writes out one 8*8 block of the 16*16 tile per iteration 
    for( k = 0; k < 4; k++ ) { 
 
        byte *pByte     = rgba + ( (k & 2) * stride + (k & 1) * (NUM_CHANNELS*2) ) * 4; 
        const short *py = YCoCgA + k * 64; 
        const short *pc = YCoCgA + 256 + ( (k & 2) * 4 + (k & 1) ) * 4; 
 
        // writes out 2 rows of an 8*8 block per iteration 
        for( j = 0; j < 4; j++ ) { 
            for( i = 0; i < 4; i++ ) { 
                int y, co, cg, r, s, t, a; 
 
                co = pc[i+ 0]; 
                cg = pc[i+64]; 
 
                r = co - cg; 
                s = cg; 
                t = co + cg; 
 
                y = py[i*2+0+0+  0] + 128; 
                a = py[i*2+0+0+384] + 128; 
 
                pByte[i*2*NUM_CHANNELS+0*NUM_CHANNELS+0] = ClampByte( y+r );    // Red 
                pByte[i*2*NUM_CHANNELS+0*NUM_CHANNELS+1] = ClampByte( y+s );    // Green 
                pByte[i*2*NUM_CHANNELS+0*NUM_CHANNELS+2] = ClampByte( y-t );    // Blue 
                pByte[i*2*NUM_CHANNELS+0*NUM_CHANNELS+3] = ClampByte( a );      // Alpha 
 
                y = py[i*2+0+1+  0] + 128; 
                a = py[i*2+0+1+384] + 128; 
 
                pByte[i*2*NUM_CHANNELS+1*NUM_CHANNELS+0] = ClampByte( y+r );    // Red 
                pByte[i*2*NUM_CHANNELS+1*NUM_CHANNELS+1] = ClampByte( y+s );    // Green 
                pByte[i*2*NUM_CHANNELS+1*NUM_CHANNELS+2] = ClampByte( y-t );    // Blue 
                pByte[i*2*NUM_CHANNELS+1*NUM_CHANNELS+3] = ClampByte( a );      // Alpha 



 
                pByte += stride; 
 
                y = py[i*2+8+0+  0] + 128; 
                a = py[i*2+8+0+384] + 128; 
 
                pByte[i*2*NUM_CHANNELS+0*NUM_CHANNELS+0] = ClampByte( y+r );    // Red 
                pByte[i*2*NUM_CHANNELS+0*NUM_CHANNELS+1] = ClampByte( y+s );    // Green 
                pByte[i*2*NUM_CHANNELS+0*NUM_CHANNELS+2] = ClampByte( y-t );    // Blue 
                pByte[i*2*NUM_CHANNELS+0*NUM_CHANNELS+3] = ClampByte( a );      // Alpha 
 
                y = py[i*2+8+1+  0] + 128; 
                a = py[i*2+8+1+384] + 128; 
 
                pByte[i*2*NUM_CHANNELS+1*NUM_CHANNELS+0] = ClampByte( y+r );    // Red 
                pByte[i*2*NUM_CHANNELS+1*NUM_CHANNELS+1] = ClampByte( y+s );    // Green 
                pByte[i*2*NUM_CHANNELS+1*NUM_CHANNELS+2] = ClampByte( y-t );    // Blue 
                pByte[i*2*NUM_CHANNELS+1*NUM_CHANNELS+3] = ClampByte( a );      // Alpha 
 
                pByte -= stride; 
            } 
 
            py += 16; 
            pc += 8; 
            pByte += 2 * stride; 
        } 
    } 
} 

 



Appendix G  
 
/* 
    MMX Optimized 4:2:0 YCoCg -> RGB Conversion 
    Copyright (C) 2006 Id Software, Inc. 
 
    This code is free software; you can redistribute it and/or 
    modify it under the terms of the GNU Lesser General Public 
    License as published by the Free Software Foundation; either 
    version 2.1 of the License, or (at your option) any later version. 
 
    This code is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU 
    Lesser General Public License for more details. 
*/ 
 
void YCoCgAToRGBA_MMX( const short *YCoCgA, byte *rgba, int stride ) { 
    assert( NUM_CHANNELS == 4 );                        // this code assumes four channels per pixel 
    assert_16_byte_aligned( rgba ); 
    assert_16_byte_aligned( YCoCgA ); 
    assert( ( stride & 15 ) == 0 ); 
 
    ALIGN16( short tmm2[4] ); 
    ALIGN16( short tmm3[4] ); 
    ALIGN16( short tmm4[4] ); 
    ALIGN16( short tmm5[4] ); 
    ALIGN16( short tmm6[4] ); 
    ALIGN16( short tmm7[4] ); 
 
    __asm { 
        xor         ecx, ecx                            // ecx = k 
        mov         esi, YCoCgA 
 
    // iterates 4 times, writes out one 8*8 block of the 16*16 tile per iteration 
    loop1: 
        mov         eax, ecx 
        and         eax, 2                              // ( k & 2 ) 
        mov         edx, ecx 
        and         edx, 1                              // ( k & 1 ) 
 
        lea         edi, [edx+eax*4] 
        shl         edi, 3 
        add         edi, dword ptr [YCoCgA] 
        add         edi, 256*2                          // YCoCgA + ( 256 + ( (k&2) * 4 + (k&1) ) * 4 ) * sizeof( YCoCgA[0] ) 
 
        imul        eax, stride 
        lea         edx, [eax+edx*(NUM_CHANNELS*2)] 
        shl         edx, 2 
        add         edx, dword ptr [rgba]               // rgba + ( (k&2) * stride + (k&1) * (NUM_CHANNELS*2) ) * 4 
 
        mov         eax, -4*16*2 
        add         esi, 4*16*2 
 
    // iterates 4 times, writes out 2 rows of an 8*8 block per iteration 
    loop2: 
        movq        mm4, [edi+ 0*2]                     // mm4 = co 
        movq        mm2, [edi+64*2]                     // mm2 = g = cg 



 
        movq        mm3, mm4                            // mm3 = co 
        psubsw      mm3, mm2                            // mm3 = r = co - cg 
        paddsw      mm4, mm2                            // mm4 = b = co + cg 
 
        pshufw      mm7, mm3, R_SHUFFLE_D( 2, 2, 3, 3 ) // mm7 = r 
        pshufw      mm6, mm2, R_SHUFFLE_D( 2, 2, 3, 3 ) // mm6 = g 
        pshufw      mm5, mm4, R_SHUFFLE_D( 2, 2, 3, 3 ) // mm5 = b 
 
        movq        tmm7, mm7 
        movq        tmm6, mm6 
        movq        tmm5, mm5 
 
        pshufw      mm3, mm3, R_SHUFFLE_D( 0, 0, 1, 1 ) 
        pshufw      mm2, mm2, R_SHUFFLE_D( 0, 0, 1, 1 ) 
        pshufw      mm4, mm4, R_SHUFFLE_D( 0, 0, 1, 1 ) 
 
        movq        tmm3, mm3 
        movq        tmm2, mm2 
        movq        tmm4, mm4 
 
        movq        mm1, [esi+eax+0*2] 
        paddsw      mm1, SIMD_MMX_word_128 
 
        paddsw      mm3, mm1                            // r0, r1, r2, r3       ( y + r ) 
        paddsw      mm2, mm1                            // g0, g1, g2, g3       ( y + g ) 
        psubsw      mm1, mm4                            // b0, b1, b2, b3       ( y - b ) 
 
        packuswb    mm3, mm3                            // r0, r1, r2, r3, r0, r1, r2, r3 
        packuswb    mm2, mm2                            // g0, g1, g2, g3, g0, g1, g2, g3 
        packuswb    mm1, mm1                            // b0, b1, b2, b3, b0, b1, b2, b3 
 
        movq        mm0, [esi+eax+0*2+384*2] 
        paddsw      mm0, SIMD_MMX_word_128 
        packuswb    mm0, mm0 
 
        punpcklbw   mm1, mm0                            // b0, a0, b1, a1, b2, a2, b3, a3 
        punpcklbw   mm3, mm2                            // r0, g0, r1, g1, r2, g2, r3, g3 
        movq        mm4, mm3                               // r0, g0, r1, g1, r2, g2, r3, g3 
        punpcklwd   mm3, mm1                            // r0, g0, b0, a0, r1, g1, b1, a1 
        punpckhwd   mm4, mm1                            // r2, g2, b2, a2, r3, g3, b3, a3 
 
        movq        [edx+0], mm3 
        movq        [edx+8], mm4 
 
        movq        mm2, [esi+eax+4*2] 
        paddsw      mm2, SIMD_MMX_word_128 
 
        paddsw      mm7, mm2                            // r0, r1, r2, r3       ( y + r ) 
        paddsw      mm6, mm2                            // g0, g1, g2, g3       ( y + b ) 
        psubsw      mm2, mm5                            // b0, b1, b2, b3       ( y - g ) 
 
        packuswb    mm7, mm7                            // r0, r1, r2, r3, r0, r1, r2, r3 
        packuswb    mm6, mm6                            // g0, g1, g2, g3, g0, g1, g2, g3 
        packuswb    mm2, mm2                            // b0, b1, b2, b3, b0, b1, b2, b3 
 
        movq        mm0, [esi+eax+4*2+384*2] 
        paddsw      mm0, SIMD_MMX_word_128 
        packuswb    mm0, mm0 
 
        punpcklbw   mm2, mm0                            // b0, a0, b1, a1, b2, a2, b3, a3 
        punpcklbw   mm7, mm6                            // r0, g0, r1, g1, r2, g2, r3, g3 



        movq        mm5, mm7                               // r0, g0, r1, g1, r2, g2, r3, g3 
        punpcklwd   mm7, mm2                            // r0, g0, b0, a0, r1, g1, b1, a1 
        punpckhwd   mm5, mm2                            // r2, g2, b2, a2, r3, g3, b3, a3 
 
        movq        [edx+16], mm7 
        movq        [edx+24], mm5 
        add         edx, stride 
 
        movq        mm7, tmm7 
        movq        mm6, tmm6 
        movq        mm5, tmm5 
 
        movq        mm3, tmm3 
        movq        mm2, tmm2 
        movq        mm4, tmm4 
 
        movq        mm1, [esi+eax+8*2] 
        paddsw      mm1, SIMD_MMX_word_128 
 
        paddsw      mm3, mm1                            // r0, r1, r2, r3       ( y + r ) 
        paddsw      mm2, mm1                            // g0, g1, g2, g3       ( y + g ) 
        psubsw      mm1, mm4                            // b0, b1, b2, b3       ( y - b ) 
 
        packuswb    mm3, mm3                            // r0, r1, r2, r3, r0, r1, r2, r3 
        packuswb    mm2, mm2                            // g0, g1, g2, g3, g0, g1, g2, g3 
        packuswb    mm1, mm1                            // b0, b1, b2, b3, b0, b1, b2, b3 
 
        movq        mm0, [esi+eax+8*2+384*2] 
        paddsw      mm0, SIMD_MMX_word_128 
        packuswb    mm0, mm0 
 
        punpcklbw   mm1, mm0                            // b0, a0, b1, a1, b2, a2, b3, a3 
        punpcklbw   mm3, mm2                            // r0, g0, r1, g1, r2, g2, r3, g3 
        movq        mm4, mm3                               // r0, g0, r1, g1, r2, g2, r3, g3 
        punpcklwd   mm3, mm1                            // r0, g0, b0, a0, r1, g1, b1, a1 
        punpckhwd   mm4, mm1                           // r2, g2, b2, a2, r3, g3, b3, a3 
 
        movq        [edx+0], mm3 
        movq        [edx+8], mm4 
 
        movq        mm2, [esi+eax+12*2] 
        paddsw      mm2, SIMD_MMX_word_128 
 
        paddsw      mm7, mm2                            // r0, r1, r2, r3       ( y + r ) 
        paddsw      mm6, mm2                            // g0, g1, g2, g3       ( y + b ) 
        psubsw      mm2, mm5                            // b0, b1, b2, b3       ( y - g ) 
 
        packuswb    mm7, mm7                            // r0, r1, r2, r3, r0, r1, r2, r3 
        packuswb    mm6, mm6                            // g0, g1, g2, g3, g0, g1, g2, g3 
        packuswb    mm2, mm2                            // b0, b1, b2, b3, b0, b1, b2, b3 
 
        movq        mm0, [esi+eax+12*2+384*2] 
        paddsw      mm0, SIMD_MMX_word_128 
        packuswb    mm0, mm0 
 
        punpcklbw   mm2, mm0                            // b0, a0, b1, a1, b2, a2, b3, a3 
        punpcklbw   mm7, mm6                            // r0, g0, r1, g1, r2, g2, r3, g3 
        movq        mm5, mm7                               // r0, g0, r1, g1, r2, g2, r3, g3 
        punpcklwd   mm7, mm2                            // r0, g0, b0, a0, r1, g1, b1, a1 
        punpckhwd   mm5, mm2                           // r2, g2, b2, a2, r3, g3, b3, a3 
 
        movq        [edx+16], mm7 



        movq        [edx+24], mm5 
        add         edx, stride 
 
        add         edi, 8*2 
        add         eax, 16*2 
        jl          loop2 
 
        add         ecx, 1 
        cmp         ecx, 4 
        jl          loop1 
 
        emms 
    } 
} 

 



Appendix H  
 
/* 
    SSE2 Optimized 4:2:0 YCoCg -> RGB Conversion 
    Copyright (C) 2006 Id Software, Inc. 
 
    This code is free software; you can redistribute it and/or 
    modify it under the terms of the GNU Lesser General Public 
    License as published by the Free Software Foundation; either 
    version 2.1 of the License, or (at your option) any later version. 
 
    This code is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU 
    Lesser General Public License for more details. 
*/ 
 
void YCoCgAToRGBA_SSE2( const short *YCoCgA, byte *rgba, int stride ) { 
    assert( NUM_CHANNELS == 4 );                        // this code assumes four channels per pixel 
    assert_16_byte_aligned( rgba ); 
    assert_16_byte_aligned( YCoCgA ); 
    assert( ( stride & 15 ) == 0 ); 
 
    __asm { 
        xor         ecx, ecx                            // ecx = k 
        mov         esi, YCoCgA 
 
    // iterates 4 times, writes out one 8*8 block of the 16*16 tile per iteration 
    loop1: 
        mov         eax, ecx 
        and         eax, 2                              // (k&2) 
        mov         edx, ecx 
        and         edx, 1                              // (k&1) 
 
        lea         edi, [edx+eax*4] 
        shl         edi, 3 
        add         edi, dword ptr [YCoCgA] 
        add         edi, 256*2                          // YCoCgA + ( 256 + ( (k&2) * 4 + (k&1) ) * 4 ) * sizeof( YCoCgA[0] ) 
 
        imul        eax, stride 
        lea         edx, [eax+edx*(NUM_CHANNELS*2)] 
        shl         edx, 2 
        add         edx, dword ptr [rgba]               // rgba + ( (k&2) * stride + (k&1) * (NUM_CHANNELS*2) ) * 4 
 
        mov         eax, -4*16*2 
        add         esi, 4*16*2 
 
    // iterates 4 times, writes out 2 rows of an 8*8 block per iteration 
    loop2: 
        movq        xmm4, qword ptr [edi+ 0*2]          // xmm4 = co 
        punpcklwd   xmm4, xmm4 
 
        movq        xmm2, qword ptr [edi+64*2]          // xmm2 = g = cg 
        punpcklwd   xmm2, xmm2 
 
        movdqa      xmm3, xmm4                          // xmm3 = co 
        psubsw      xmm3, xmm2                          // xmm3 = r = co - cg 
        paddsw      xmm4, xmm2                          // xmm4 = b = co + cg 



 
        movdqa      xmm7, xmm3                          // xmm7 = r 
        movdqa      xmm6, xmm2                          // xmm6 = g 
        movdqa      xmm5, xmm4                          // xmm5 = b 
 
        movdqa      xmm1, qword ptr [esi+eax+0*2] 
        paddsw      xmm1, SIMD_SSE2_word_128 
 
        paddsw      xmm3, xmm1                          // r0, r1, r2, r3       ( y + r ) 
        paddsw      xmm2, xmm1                          // g0, g1, g2, g3       ( y + g ) 
        psubsw      xmm1, xmm4                          // b0, b1, b2, b3       ( y - b ) 
 
        packuswb    xmm3, xmm3                          // r0, r1, r2, r3, r0, r1, r2, r3 
        packuswb    xmm2, xmm2                          // g0, g1, g2, g3, g0, g1, g2, g3 
        packuswb    xmm1, xmm1                          // b0, b1, b2, b3, b0, b1, b2, b3 
 
        movdqa      xmm0, qword ptr [esi+eax+0*2+384*2] 
        paddsw      xmm0, SIMD_SSE2_word_128 
        packuswb    xmm0, xmm0 
 
        punpcklbw   xmm1, xmm0                          // b0, a0, b1, a1, b2, a2, b3, a3 
        punpcklbw   xmm3, xmm2                          // r0, g0, r1, g1, r2, g2, r3, g3 
        movdqa      xmm4, xmm3                            // r0, g0, r1, g1, r2, g2, r3, g3 
        punpcklwd   xmm3, xmm1                          // r0, g0, b0, a0, r1, g1, b1, a1 
        punpckhwd   xmm4, xmm1                          // r2, g2, b2, a1, r3, g3, b3, a3 
 
        movdqa      [edx+ 0], xmm3 
        movdqa      [edx+16], xmm4 
        add         edx, stride 
 
        movdqa      xmm2, qword ptr [esi+eax+8*2] 
        paddsw      xmm2, SIMD_SSE2_word_128 
 
        paddsw      xmm7, xmm2                          // r0, r1, r2, r3       ( y + r ) 
        paddsw      xmm6, xmm2                          // g0, g1, g2, g3       ( y + g ) 
        psubsw      xmm2, xmm5                          // b0, b1, b2, b3       ( y - b ) 
 
        packuswb    xmm7, xmm7                          // r0, r1, r2, r3, r0, r1, r2, r3 
        packuswb    xmm6, xmm6                          // g0, g1, g2, g3, g0, g1, g2, g3 
        packuswb    xmm2, xmm2                          // b0, b1, b2, b3, b0, b1, b2, b3 
 
        movdqa      xmm0, qword ptr [esi+eax+8*2+384*2] 
        paddsw      xmm0, SIMD_SSE2_word_128 
        packuswb    xmm0, xmm0 
 
        punpcklbw   xmm2, xmm0                          // b0, a0, b1, a1, b2, a1, b3, a3 
        punpcklbw   xmm7, xmm6                          // r0, g0, r1, g1, r2, g2, r3, g3 
        movdqa      xmm5, xmm7                            // r0, g0, r1, g1, r2, g2, r3, g3 
        punpcklwd   xmm7, xmm2                          // r0, g0, b0, a0, r1, g1, b1, a1 
        punpckhwd   xmm5, xmm2                          // r2, g2, b2, a2, r3, g3, b3, a2 
 
        movdqa      [edx+ 0], xmm7 
        movdqa      [edx+16], xmm5 
        add         edx, stride 
 
        add         edi, 8*2 
        add         eax, 16*2 
        jl          loop2 
 
        add         ecx, 1 
        cmp         ecx, 4 
        jl          loop1 



    } 
} 

 
 
 


