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Abstract  
Optimized routines to create shadow volumes are presented. Conditionally executed 

code is replaced with instructions that are always executed and the Intel Streaming 

SIMD Extensions are used to exploit parallelism and minimize the number of executed 

instructions. The optimized routines are significantly faster than the implementation in 

C on a Pentium 4.  

1. Introduction  
Shadows are important in many applications because they add realism and help in 

understanding spatial relationships between objects. For instance shadows can put an 

animating character in place, making it much easier to see when the character is 

airborne or on the ground. The following two screenshots show a monster from the 

computer game DOOM III without and with shadows. Clearly it is much easier to 

determine the monsters is standing on the ground when the model casts shadows.  

 

 
Advances in graphics hardware have made it possible to accurately render shadows 

from point and directional l ight sources in interactive applications. There are several 

different approaches to rendering real-time shadows on today's hardware. The more 

popular approaches use shadow maps, shadow volumes or a combination of these to 

define the regions in space that are in shadow.  

Approaches based on shadow maps can render shadows from point lights, spot lights 

and directional l ights for any kind of occluder geometry. First the distance from the 

light source of all objects that cast shadows is rendered onto a shadow map texture 

from the point of view of the light source. Next objects that receive shadows are 

rendered on-screen and the distance from a rendered pixel to the light source is 

compared to the value of the pixel in the shadow map texture that projects onto the 

rendered pixel to determine whether or not the rendered pixel is in shadow. Shadow 

mapping often suffers from aliasing because the projection transform used to map 



shadow map pixels onto on-screen pixels changes the screen size of such pixels. As a 

result very large shadow maps and filtering have to be used to achieve good quality.  

The approaches based on shadow volumes define the regions in space that are in 

shadow of an occluder in object space with additional geometry. Shadow volumes can 

be constructed for point lights, spot lights and directional l ight sources and always 

produce pixel-accurate but hard shadows. Approaches using shadow volumes cannot 

deal with objects that have no polygonal structure such as alpha-tested or displacement 

mapped geometry. Shadow volumes are typically constructed on the CPU which can be 

expensive. In this article the Intel Streaming SIMD Extensions are used to optimize the 

construction of shadow volumes on the CPU.  

Several methods have been proposed to create shadow volumes entirely in vertex 

programs on today's graphics hardware [13,17,18,19]. However, as Kilgard [16] points 

out, computing silhouette edges within a vertex program may not improve performance 

if the occluders have high triangle counts or if there are a lot of shadow casting light 

sources. The reason is the need to push many more vertices into the pipeline that all 

have to go through the silhouette edge determination within the vertex program [19]. 

As a result occluders with high triangle counts generate large amounts of wasted 

vertices (degenerate triangles), and the cost of testing all the extra vertices may very 

well exceed the CPU and geometry upload savings. As more light sources interact with 

the geometry the vertex program costs accumulate rapidly because intermediate results 

and common calculations cannot be saved and/or shared on today's graphics hardware.  

1.1 Previous Work  

Shadow volumes were introduced by Frank Crow [1]. Bergeron [2] generalized shadow 

volumes for non-manifold objects and non-planar polygons. BSP trees have been used 

to accelerate shadow volume computation [5], but they do not work well with moving 

lights or dynamic objects.  

One of the first implementations using graphics hardware to render shadow volumes 

was demonstrated in Pixel-Planes [4]. Heidmann [6] implemented Crow's algorithm 

using the stencil buffer. This approach is known as the z-pass method and can produce 

incorrect results when the viewport cuts through a shadow volume. Diefenbach [7] 

presented capping methods, but these are not completely robust. To overcome these 

problems several researchers have proposed z-fail testing, also known as "Carmack's 

Reverse", for shadow volume rendering [9,10,11,12]. Brennan [13] presented methods 

for constructing shadow volumes entirely in vertex programs. Brabec and Seidel [17] 

described an algorithm for fast shadow volume computation using graphics hardware for 

silhouette edge determination where geometry is encoded as colors. McGuire and 

Hughes [19] described how to find silhouettes and extrude them into shadow volume 

sides entirely in a vertex program using a specially precomputed mesh.  

1.2 Layout  

Section 2 describes some details of shadow volumes. Section 3 describes the basic 

algorithm used to create a shadow volume for an arbitrary triangle mesh. Sections 4 



through 7 describe how the different parts of the algorithm can be optimized using the 

Intel Streaming SIMD Extensions. The results of the optimizations are presented in 

section 8 and several conclusions are drawn in section 9.  

2. Shadow Volumes  
Shadow volumes can be constructed for point lights, spot lights and directional l ight 

sources and always produce pixel-accurate but hard shadows. A shadow volume defines 

the regions in space that are in shadow of an occluder in object space with additional 

geometry. This geometry is a regular mesh that is not visible but rendered into a 

separate buffer, usually a stencil buffer. The shadow volume geometry is derived from 

the occluder geometry given a light source. It is typically hard or not possible to 

construct shadow volumes for occluders that have no polygonal structure such as alpha-

tested or displacement mapped geometry.  

The algorithm presented here assumes occluder triangles that face away from the light 

source cast shadows. The shadow volume sides are constructed from the extrusion of 

silhouette edges of the occluder geometry. Such silhouette edges are the boundaries 

between lit and unlit triangles. The shadow volume is capped on one end by the 

triangles facing away from the light source. On the other end the shadow volume is 

capped by another copy of the same triangles but these triangles are projected away 

from the light source to infinity. To properly render the shadow volume the vertices of 

the shadow volume triangles must consistently wind counterclockwise so that the 

triangle normals point out of the shadow volume.  

To determine the regions in space that are in shadow of an occluder the stencil buffer is 

first cleared to all zeros. The shadow volume for the occluder is then rendered to the 

stencil buffer with an appropriate depth test. Front facing shadow volume triangles 

increment and back facing triangles decrement the stencil buffer pixels. Pixels with a 

stencil buffer value unequal zero are now considered in shadow.  

Not all the shadow volume geometry needs to be drawn at all times. The shadow volume 

caps can be culled and often completely omitted [20]. Special hardware features like 

two-sided stencil testing, scissor rectangles and depth clamping can be used to further 

improve the performance of shadow volume rendering [12].  

 

3. Creating Shadow Volumes  
The routine presented here creates a shadow volume for an arbitrary triangle surface. 

The shadow volume is created as a list with vertex indices. The actual vertices of the 

shadow volume are not copied and/or extruded in this routine.  

Transferring vertex data is avoided by using a double length vertex buffer and a vertex 

program to perform the shadow volume extrusion in hardware. All the vertices are 

duplicated in this double length vertex buffer and it is usually more efficient to use a 

separate vertex buffer for shadow volume rendering with vertices that only store 

positions. Another vertex buffer with vertices described with texture coordinates, 



normals, tangents etc. is used for rendering the visual representation of the surface. 

The vertex buffer for rendering shadow volumes contains two consecutive copies of each 

vertex with the positions stored as homogenous coordinates. The vertices at even 

positions in this vertex buffer are of the form (x,y,z,1) and the vertices at the odd 

positions are of the form (x,y,z,0). The light position is subtracted from the (x,y,z) of 

the vertices at the odd positions in the vertex program which allows all shadow volumes 

for a single surface to use the same vertex buffer. When the appropriate hardware is 

not available unique vertex buffers have to be used for each shadow volume and the 

light origin is subtracted from the vertices at odd positions on the CPU. Because the 'w' 

component of the homogenous coordinates for the vertices at the odd positions is zero 

these vertices are projected to infinity and not clipped by the far clipping plane when 

projected with an appropriate projection matrix [12].  

The routine presented here creates indices for the shadow volume triangles to be used 

with a vertex buffer as described above. The code for this routine is l isted below. The 

occluder triangle surface is specified as an array with indices. For each triangle this 

array contains three elements with the numbers of the vertices that create the triangle. 

To construct the shadow volume sides additional connectivity information of the 

occluder triangles is required. For this purpose an array with SilEdge objects is passed 

into the routine below. This array has a SilEdge object for every triangle edge in the 

surface that may potentially become a silhouette edge. Such an SilEdge object stores 

two triangle/plane numbers and the indices of two vertices that define an edge. It is 

important to construct the SilEdge objects with consistent edge orientations to make 

sure the shadow volume side triangles have the correct winding directions. The vertices 

of the shadow volume triangles must wind counterclockwise so that the surface normal 

points out of the shadow volume. The SilEdge object is defined in code as follows.  

struct SilEdge { 
    int p1, p2;     // triangles/planes defining the edge
    int v1, v2;     // vertices defining the edge 
}; 

To make sure shadow volumes with correct winding orders are created the convention is 

used in which the edge from SilEdge::v1 to SilEdge::v2 is counterclockwise in the 

triangle SilEdge::p1 and clockwise in the triangle SilEdge::p2. Because a double size 

vertex buffer is used for the shadow volumes the vertex numbers in the SilEdge objects 

are multiplied by two so they point at the even vertices in the vertex buffer. The array 

with SilEdge objects is setup once for a surface and can be used to construct all shadow 

volumes.  

The 'CreateShadowVolume' routine listed below takes a 'facing' parameter which is an 

array with 'number of triangles plus one' bytes. A byte in this array is set to one if the 

associated triangle faces the light source and set to zero if the triangle faces away from 

the light source. The last byte in the array is not associated with any particular triangle 

but is used for dangling edges. Edges in the surface that are used by only a single 

triangle have a SilEdge object defined for them with the second plane number pointing 

at this last byte in the 'facing' array. Because this last byte is always set to one a 

dangling edge will contribute to the shadow silhouette of the surface when a triangle 

with the dangling edge faces away from the light source.  



Whether or not a triangle faces the light source can be calculated by testing if the light 

source is at the front side of the triangle plane. If ax + by + cz + d = 0 is the triangle 

plane equation then the facing information is calculated as shown in appendix A. In this 

routine the (light.x, l ight.y, l ight.z, l ight.w) is the light origin for spot lights or the light 

direction for directional l ights. The triangle plane equations are calculated once per 

surface and are only recalculated when the vertex positions of the occluder triangles 

change for instance when the surface animates. All lights interacting with the surface 

can use the same plane equations to derive facing information.  

The 'CreateShadowVolume' routine listed below also takes a 'cullBits' parameter which 

is an array with a byte for each vertex with culling information. A bit in such a byte 

tells whether or not the vertex is at the right side of one of the bounding planes of the 

light volume. Typically only 6 bits of each byte are used for lights with 6 bounding 

planes. If any of these 6 bits is set to one the vertex is outside the light volume. The 

'cullBits' parameter can be null if no culling information is available or if the complete 

surface is inside the light volume. Usually the bounding volume of the surface can be 

quickly tested against the bounding planes of the light volume. The surface is often 

completely in front of at least several of the light volume bounding planes and all the 

bits for such bounding planes are set to zero in the 'cullBits' array. The routine to 

calculate the cull buts is l isted in appendix B.  

Whether or not the culling information should be calculated and used depends on the 

kind of l ights and surfaces that interact with each other. For small surfaces in large 

light volumes the culling information is not used when the surface is completely inside 

the light volume. However, the culling information should be used for small l ights 

interacting with very large surfaces. For instance the headlights of a car driving over 

terrain typically only interact with a few triangles of the terrain mesh. The terrain 

triangles that do not interact with the light volume should be culled to reduce the 

number of shadow volume triangles and to save fil l rate.  

int CreateShadowVolume( int *shadowIndices, const int *indices, int numIndices, const SilEdge *silEdges, int 
numSilEdges, byte *facing, const byte *cullBits ) { 
    int numShadowingTriangles, numSilhouetteIndices, numCapIndices; 
    int numTriangles = numIndices / 3; 
 
    if ( cullBits == NULL ) { 
        // count the number of shadowing triangles 
        numShadowingTriangles = numTriangles - CountFacing( facing, numTriangles ); 
    } else { 
        // count the number of shadowing triangles and make all triangles that are outside the light frustum      
        // "facing" so they won't cast shadows 
        numShadowingTriangles = numTriangles - CountFacingCull( facing, numTriangles, indices, cullBits ); 
    } 
 
    if ( !numShadowingTriangles ) { 
        // no triangles are inside the light frustum and still facing the right way 
        return 0; 
    } 
 
    // create triangles along silhouette planes 
    numSilhouetteIndices = CreateSilTriangles( shadowIndices, facing, silEdges, numSilEdges ); 
 
    // put some triangles on the model and some on the distant projection 
    numCapIndices = CreateCapTriangles( shadowIndices + numSilhouetteIndices, facing, indices, numIndices ); 
 
    return numSilhouetteIndices + numCapIndices; 
} 



The routine listed above calls four functions to do the actual work. The first two 

functions count the number of facing triangles. The second function can also modify the 

facing of some triangles based on the culling information. When a triangle is found to 

be completely off to one side of one of the l ight volume bounding planes the triangle is 

assumed facing and will not cast shadows. The last two functions that are called create 

the actual indices for the shadow volume silhouette triangles and cap triangles 

respectively. The following sections describe how these four functions can be optimized 

using the Intel Streaming SIMD Extensions. The routines to calculate the facing of 

triangles and the cull bits of vertices that are listed in appendix A and appendix B 

respectively can also be optimized using the Intel Streaming SIMD Extensions. 

However, these optimizations are straight forward and the assembler code is ommited 

here.  

4. Counting Facing Triangles  
The function that counts the number of facing triangles can be implemented with a 

simple loop in C as shown below.  

int CountFacing( const byte *facing, const int numTriangles ) {
    int i, n; 
 
    n = 0; 
    for ( i = 0; i < numTriangles; i++ ) { 
        if ( facing[i] ) { 
            n++; 
        } 
    } 
    return n; 
} 

Because a facing byte is always either one or zero there is no need to test whether or 

not the facing byte is unequal zero in order to conditionally increment a counter. 

Instead the facing bytes can simply be added together to avoid any conditional 

branches.  

n += facing[i]; 

This function can be further optimized in C by unrolling the loop several times and 

removing the dependencies between the consecutive statements.  

n0 += facing[i+0]; 
n1 += facing[i+1]; 
n2 += facing[i+2]; 
n3 += facing[i+3]; 

Here n0, n1, n2, n3 are four separate independent integer counters that are 

accumulated after the loop as follows.  

n = n0 + n1 + n2 + n3; 

Using the Intel Streaming SIMD Extensions the loop can be unrolled many more times. 

The SSE2 instruction set allows 16 unsigned bytes to be added in parallel with a single 

'paddusb' instruction. The SSE2 instruction 'movdqa' can be used to load 16 facing 

bytes. If more than 256 facing bytes are added the bytes could overflow in case all the 

facing bytes happen to be set to one. Therefore the bytes have to be converted to word 

or double word integers. The instructions 'punpcklbw', 'punpckhbw', 'punpcklwd' and 

'punpckhwd' can be used for this purpose. The following code shows how 16 unsigned 



bytes in the 'xmm0' register are added together to form 4 double word integers in the 

same register.  

movdqa      xmm1, xmm0 
punpcklbw   xmm0, xmm7 
punpckhbw   xmm1, xmm7 
paddusw     xmm0, xmm1 
movdqa      xmm1, xmm0 
punpcklwd   xmm0, xmm7 
punpckhwd   xmm1, xmm7 
paddd       xmm0, xmm1 

In the above code the 'xmm7' register contains all zeros. The 'punpcklbw' instruction is 

used to interleave the low-order bytes of the two operands. Because the 'xmm7' 

register contains all zeros the low-order bytes are interleaved with zeros and effectively 

zero extended to words. In the same way the high-order bytes are zero extended to 

words. The two registers with 8 words each are now added together and the result is 

once more zero extended to double words with the 'punpcklwd' and 'punpckhwd' 

instructions.  

The complete optimized routine is l isted in appendix C. The routine has four loops. The 

first loop adds 256 facing bytes per iteration, the second loop 16, the third loop 4 and 

finally the last loop adds any remaining facing bytes. The routine listed in appendix C 

assumes the array with facing bytes is aligned on a 16 byte boundary.  

5. Counting Facing Triangles With Culling  
The second function used to create shadow volumes can be implemented in C as 

follows.  

int CountFacingCull( byte *facing, const int numTriangles, const int *indices, const byte *cullBits ) {
    int i, n; 
 
    n = 0; 
    for ( i = 0; i < numTriangles; i++ ) { 
        if ( !facing[i] ) { 
            int i1 = indices[0]; 
            int i2 = indices[1]; 
            int i3 = indices[2]; 
            if ( cullBits[i1] & cullBits[i2] & cullBits[i3] ) { 
                facing[i] = 1; 
                n++; 
            } 
        } else { 
            n++; 
        } 
        indices += 3; 
    } 
    return n; 
} 

This function counts the number of triangles that face the light source just like the 

function described in the previous section. However, based on the cull bits of the 

vertices, this function also culls triangles that are outside the light volume by setting 

the facing byte for such triangles to one. If a triangle is completely off to one side of 

one of the l ight volume bounding planes the bitwise logical 'and' of the cull bits for the 

vertices will have a bit set to one and will as such be unequal zero. If the bitwise 

logical 'and' of the cull bits is unequal zero the facing byte for the triangle is set to 

one.  



The function uses several conditional branches and there are several sections with 

conditionally executed code. The conditional branches are often hard to predict because 

the facing of triangles may change erratically while a surface animates. A surface may 

also interact with many different light sources at different positions for which the facing 

triangles are completely different. These hard to predict conditional branches typically 

result in numerous mispredictions and significant penalties on today's CPUs that 

implement a deep pipeline [22,23]. When a branch is mispredicted, the misprediction 

penalty is typically the depth of the pipeline.  

As such the routine can be optimized in C by replacing the poorly predictable branches 

with some bit manipulation.  

int c = cullBits[indices[0]] & cullBits[indices[1]] & cullBits[indices[2]];
facing[i] |= ( (-c) >> 31 ) & 1; 
n += facing[i]; 

First the bitwise logical 'and' of the cull bits for the vertices is calculated and stored in 

the variable 'c'. If the triangle is completely off to one side of one of the light volume 

bounding planes the variable 'c' will have a bit set to one and will as such be unequal 

zero. By negating the variable 'c' the 31st bit will be set if and only if the variable is 

unequal zero. This 31st bit is then shifted to bit position zero and a bitwise logical 'and' 

with one is used to make sure no other bits are set. A bitwise logical 'or' is used to set 

the facing of the triangle to one if the triangle is outside the light volume. Next the 

triangle facing byte is added to the facing counter just l ike in the routine described in 

the previous section.  

The routine can be further optimized using the Intel Streaming SIMD Extensions. 

Because the triangles may reference arbitrary vertices the cull bits for a single triangle 

can be scattered in memory which forces the cull bits to be loaded individually. The 

loop is unrolled four times and the bitwise logical 'and' of the cull bits for four triangles 

are stored in the lower double word of the SSE register 'xmm0'. The 'pinsrw' instruction 

is used to quickly insert the cull bits for the last two triangles into the SSE register. 

Instead of negating the cull bits and shifting the 31st bit, the 'pcmpgtb' instruction is 

used to compare the cull bits with zero and directly set each byte to either all zeros or 

all ones. A bitwise logical 'and' with bytes set to one is used to make sure all bits of 

each byte except the first are always set to zero. Four facing bytes are loaded and a 

bitwise logical 'or' is used to set any triangles outside the light volume to facing. The 

new facing bytes are stored back to memory and accumulated to count the total number 

of facing triangles. To accumulate the facing bytes they are zero extended to double 

words using the 'punpcklbw' and 'punpcklwd' instructions.  

The complete optimized routine is l isted in appendix D. The routine assumes no 

alignment for the arrays but for optimal performance the arrays should be at least 

aligned on a 4 byte boundary.  

6. Creating Silhouette Triangles  
The following function can be used to setup the triangle indices for the shadow volume 

sides.  



 

int CreateSilTriangles( int *shadowIndices, const byte *facing, const SilEdge *silEdges, const int numSilEdges ) 
{ 
    int i; 
    const silEdge_t *sil; 
    int *si; 
 
    si = shadowIndices; 
    for ( sil = silEdges, i = numSilEdges; i > 0; i--, sil++ ) { 
 
        byte f1 = facing[sil->p1]; 
        byte f2 = facing[sil->p2]; 
 
        if ( f1 != f2 ) { 
 
            int v1 = sil->v1; 
            int v2 = sil->v2; 
 
            if ( f1 ) { 
                si[0] = v1; 
                si[1] = v2 + 1; 
                si[2] = v2; 
                si[3] = v1; 
                si[4] = v1 + 1; 
                si[5] = v2 + 1; 
            } else { 
                si[0] = v1; 
                si[1] = v2; 
                si[2] = v2 + 1; 
                si[3] = v1 + 1; 
                si[4] = v1; 
                si[5] = v2 + 1; 
            } 
            si += 6; 
        } 
    } 
    return si - shadowIndices; 
} 

The function loops over the array with SilEdge objects of a surface. For each potential 

silhouette edge the routine compares the facing of the two triangles that share the 

edge. If one of the triangles faces the light source and the other does not then the edge 

is part of the shadow silhouette. For each shadow silhouette edge the routine creates 

two triangles that represent the extruded edge. To properly determine the regions in 

space that are in shadow the vertices of the shadow volume triangles must consistently 

wind counterclockwise so that the triangle normals point out of the shadow volume. As 

such the triangle winding orders have to be set based on which of the two triangles 

faces the light source.  

Just like the function in the previous section this function uses several hard to predict 

conditional branches. Mispredictions and significant penalties are the result. However, 

the triangle winding order can be set based on facing without using a poorly predictable 

branch as shown below.  

si[0] = v1; 
si[1] = v2 ^ f1; 
si[2] = v2 ^ f2; 
si[3] = v1 ^ f2; 
si[4] = v1 ^ f1; 
si[5] = v2 ^ 1; 

It may not be immediately apparent the above code does the right thing. However, as 

described in section 2 the SilEdge vertex numbers are multiplied with two and always 

even. As such flipping the last bit of these vertex numbers is equivalent to adding one. 

Furthermore if 'f1' equals one then 'f2' always equals zero and vice versa because only 

one of the two triangles faces the light source.  



The first conditional branch in the function above can be avoided by always writing out 

the silhouette triangles but only updating the shadow volume index pointer when one 

triangle faces the light source and the other does not.  

si += 6 * ( f1 ^ f2 ); 

Changing the C code like this does not necessarily improve the performance. Even 

through the misprediction penalties are avoided the function will burn through all 

instructions in all cases. However, the Intel Streaming SIMD Extensions can be used to 

minimize the number of instructions and dependencies such that avoiding the 

misprediction penalties more than makes up for the additional instructions that would 

not have been executed in the former case of a properly predicted branch for an edge 

that is not part of the shadow silhouette.  

In the optimized routine the loop is unrolled four times. The facing bytes are loaded 

individually and moved to SSE registers. The SilEdge vertex numbers are loaded into an 

SSE register with a single 'movq' instruction. Two shuffle and two bitwise logical 

exclusive-or instructions are used to spread, and increment the vertex numbers based 

on the facing of the triangles. In the C code above a bitwise logical exclusive-or with a 

constant of one is used to increment one of the vertex numbers. However, the 

optimized routine makes use of the fact that only ever one of the triangles faces the 

light source for a shadow silhouette edge. As such only one of the two facing bytes 'f1' 

and 'f2' is set to one which makes ( v1 ^ f1 ^ f2 ) equivalent to ( v1 ^ 1 ). The shadow 

index pointer is incremented based on the facing of the triangles and the pointer is 

moved between two general purpose registers to minimize the dependencies.  

The complete optimized routine is l isted in appendix E. The routine assumes the arrays 

with indices are aligned on a 16 byte boundary.  

7. Creating Cap Triangles  
The following function can be used to setup the triangle indices for the shadow volume 

caps.  

int CreateCapTriangles( int *shadowIndices, const byte *facing, const int *indices, const int numIndices ) {
    int i, j; 
    int *si; 
 
    si = shadowIndices; 
    for ( i = 0, j = 0; i < numIndices; i += 3, j++ ) { 
        if ( facing[j] ) { 
            continue; 
        } 
 
        int i0 = indices[i+0] * 2; 
        int i1 = indices[i+1] * 2; 
        int i2 = indices[i+2] * 2; 
 
        si[0] = i2; 
        si[1] = i1; 
        si[2] = i0; 
 
        si[3] = i0 + 1; 
        si[4] = i1 + 1; 
        si[5] = i2 + 1; 
 
        si += 6; 
    } 
    return si - shadowIndices; 
} 



The same strategy as used for the routine in the previous section can be used to 

optimize the above function. The loop is unrolled 4 times to allow the indices for four 

triangles to be loaded with three 'movdqa' instructions. The triangle indices are 

rearranged with several shuffle instructions and a bitwise logical exclusive-or is used to 

increment some of the triangle indices. The shadow index pointer is incremented based 

on the facing of the triangles and the pointer is moved between two general purpose 

registers to minimize the dependencies.  

The complete optimized routine is l isted in appendix F. The routine assumes the arrays 

with indices are aligned on a 16 byte boundary.  

8. Results  
The routines have been tested on an Intel® Pentium® 4 Processor on 130nm 

Technology and an Intel® Pentium® 4 Processor on 90nm Technology. The routines 

created shadow volumes for a realistic player character model with 1344 triangles and 

2016 potential silhouette edges (SilEdge objects). Note that the number of potential 

silhouette edges is the maximum number of edges of a two-manifold mesh (2016 = 

1344 * 3 / 2). Furthermore 50% of the triangles face the light source and 20% of the 

potential silhouette edges are part of the shadow silhouette. Different models may have 

different triangle counts but these ratios are typically similar for human-like characters.  

The total number of clock cycles and the number of clock cycles per triangle or 

silhouette edge for each routine on the different CPUs are listed in the following table.  

Hot Cache Clock Cycle Counts 

Routine 
P4 130nm 

total   
clock cycles   

P4 130nm clock 
cycles   

per element 

P4 90nm 
total   

clock cycles   

P4 90nm clock 
cycles   

per element 

CountFacing (C)   22548 17 22688 17 

CountFacing (SSE)   348 0.3 383 0.3 

CountFacingCull (C)   24124 18 29835 22 

CountFacingCull (SSE)   10848 8 13883 10 

CreateSilTriangles (C)   32314 16 44983 22 

CreateSilTriangles (SSE)   32292 16 36901 18 

CreateCapTriangles (C)   23780 18 33848 25 

CreateCapTriangles (SSE)   12080 9 14205 11 

CreateShadowVolume, no culling (C)   79042 59 112443 83 

CreateShadowVolume, no culling 
(SSE)   

44924 33 51503 38 

CreateShadowVolume, with culling (C) 
  

80625 60 119590 89 

CreateShadowVolume, with culling 
(SSE)   

55648 41 66660 50 



9. Conclusion  
The conventional algorithms to create shadow volumes on the CPU as presented in 

literature typically use a lot of conditional branches and conditionally executed code. 

These conditional branches are often hard to predict because the facing of triangles 

may change erratically while a surface animates. A surface may also interact with many 

different light sources at different positions for which the facing triangles are 

completely different. These hard to predict conditional branches typically result in 

numerous mispredictions and significant penalties on today's CPUs that implement a 

deep pipeline like the Pentium 4. When a branch is mispredicted, the misprediction 

penalty is typically the depth of the pipeline.  

The conditionally executed code can be replaced with instructions that are always 

executed. The optimized algorithm always burns through all instructions in all cases but 

the number of executed instructions is minimized using the Intel Streaming SIMD 

Extensions. Furthermore the instruction dependencies are minimized to exploit 

maximum parallelism through the dynamic execution engine of the Pentium 4. As a 

result the optimized algorithm is significantly faster while it does not suffer from 

penalties due to mispredicted branches.  
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Appendix A  
/* 
    Calculating Triangle Facing 
    Copyright (C) 2005 Id Software, Inc. 
    Written by J.M.P. van Waveren 
 
    This code is free software; you can redistribute it and/or 
    modify it under the terms of the GNU Lesser General Public 
    License as published by the Free Software Foundation; either 
    version 2.1 of the License, or (at your option) any later version. 
 
    This code is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU 
    Lesser General Public License for more details. 
*/ 
 
struct Vec4 { 
    float   x, y, z, w; 
}; 
 
struct Plane { 
    float   a, b, c, d; 
}; 
 
void CalculateFacing( const Plane *planes, const int numTriangles, const Vec4 &light, byte *facing ) {
    int i; 
 
    for ( i = 0; i < numTriangles; i++ ) { 
        facing[i] = planes[i].a * light.x + 
                    planes[i].b * light.y + 
                    planes[i].c * light.z + 
                    planes[i].d * light.w > 0.0f; 
    } 
    facing[numTriangles] = 1;   // for dangling edges to reference 
} 

Appendix B  
/* 
    Calculating Vertex Cull Bits 
    Copyright (C) 2005 Id Software, Inc. 
    Written by J.M.P. van Waveren 
 
    This code is free software; you can redistribute it and/or 
    modify it under the terms of the GNU Lesser General Public 
    License as published by the Free Software Foundation; either 
    version 2.1 of the License, or (at your option) any later version. 
 
    This code is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU 
    Lesser General Public License for more details. 
*/ 
 
struct Vec4 { 
    float   x, y, z, w; 
}; 
 
struct Plane { 
    float   a, b, c, d; 
}; 
 
struct Vertex { 
    Vec4    position; 
    Vec4    normal; 
}; 
 

http://www.intel.com/cd/ids/developer/asmo-na/eng/microprocessors/ia32/pentium4/optimization/66779.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/microprocessors/ia32/pentium4/optimization/66779.htm


struct Bounds { 
    Vec4    center; 
    Vec4    extents; 
}; 
 
const float CULL_EPSILON        = 0.0f; 
const int NUM_LIGHT_PLANES      = 6; 
 
bool CalculateCullBits( const Vertex *verts, const int numVerts, const Bounds &surfaceBounds, const Plane 
lightPlanes[NUM_LIGHT_PLANES], byte *cullBits ) { 
    int i, j, frontBits; 
 
    assert( NUM_LIGHT_PLANES <= sizeof( cullBits[0] ) * 8 ); 
 
    frontBits = 0; 
 
    // cull the triangle surface bounding box 
    for ( i = 0; i < NUM_LIGHT_PLANES; i++ ) { 
        const Plane &plane = lightPlanes[i]; 
        float d1 = plane.a * surfaceBounds.center.x + 
                        plane.b * surfaceBounds.center.y + 
                            plane.c * surfaceBounds.center.z + 
                                plane.d; 
        float d2 = fabs( plane.a * surfaceBounds.extents.x ) + 
                        fabs( plane.b * surfaceBounds.extents.y ) + 
                            fabs( plane.c * surfaceBounds.extents.z ); 
 
        if ( d1 - d2 >= CULL_EPSILON ) { 
            frontBits |= 1 << i;    // front bits for the whole surface 
        } 
    } 
 
    // if the surface is completely inside the light frustum 
    if ( frontBits == ( ( 1 << NUM_LIGHT_PLANES ) - 1 ) ) { 
        return true;    // return true if completely inside 
    } 
 
    memset( cullBits, 0, numVerts * sizeof( cullBits[0] ) ); 
 
    for ( i = 0; i < NUM_LIGHT_PLANES; i++ ) { 
        // if completely infront of this clipping plane 
        if ( frontBits & ( 1 << i ) ) { 
            continue; 
        } 
        const Plane &plane = lightPlanes[i]; 
        for ( j = 0; j < numVerts; j++ ) { 
            int bit = plane.a * verts[j].position.x + 
                        plane.b * verts[j].position.y + 
                            plane.c * verts[j].position.z + 
                                plane.d < CULL_EPSILON; 
            cullBits[j] |= bit << i; 
        } 
    } 
    return false;       // return false if not completely inside 
} 

 

Appendix C  
/* 
    SSE Optimized Counting of Facing Triangles 
    Copyright (C) 2005 Id Software, Inc. 
    Written by J.M.P. van Waveren 
 
    This code is free software; you can redistribute it and/or 
    modify it under the terms of the GNU Lesser General Public 
    License as published by the Free Software Foundation; either 
    version 2.1 of the License, or (at your option) any later version. 
 
    This code is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU 
    Lesser General Public License for more details. 
*/ 
 
#define assert_16_byte_aligned( pointer )   assert( (((UINT_PTR)(pointer))&15) == 0 ); 
#define ALIGN16( x )                        __declspec(align(16)) x 
#define ALIGN4_INIT1( X, I )                ALIGN16( static X[4] = { I, I, I, I } ) 



#define ALIGN4_INIT4( X, I0, I1, I2, I3 )   ALIGN16( static X[4] ) = { I0, I1, I2, I3 } 
#define ALIGN16_INIT1( X, I0 )              ALIGN16( static X[16] ) = { I0, I0, I0, I0, I0, I0, I0, I0, I0, I0, 
I0, I0, I0, I0, I0, I0 } 
#define R_SHUFFLE_D( x, y, z, w )          (( (w) & 3 ) << 6 | ( (z) & 3 ) << 4 | ( (y) & 3 ) << 2 | ( (x) & 3 
)) 
 
int CountFacing( const byte *facing, const int numTriangles ) { 
    ALIGN16( int n[4]; ) 
 
    __asm { 
 
        mov         eax, numTriangles 
        mov         edi, facing 
        test        eax, eax 
        jz          done 
 
        pxor        xmm6, xmm6 
        pxor        xmm7, xmm7 
 
        sub         eax, 256 
        jl          run16 
 
    loop256: 
        movdqa      xmm0, [edi+ 0*16] 
        movdqa      xmm1, [edi+ 1*16] 
        movdqa      xmm2, [edi+ 2*16] 
        movdqa      xmm3, [edi+ 3*16] 
        paddusb     xmm0, [edi+ 4*16] 
        paddusb     xmm1, [edi+ 5*16] 
        paddusb     xmm2, [edi+ 6*16] 
        paddusb     xmm3, [edi+ 7*16] 
        paddusb     xmm0, [edi+ 8*16] 
        paddusb     xmm1, [edi+ 9*16] 
        paddusb     xmm2, [edi+10*16] 
        paddusb     xmm3, [edi+11*16] 
        paddusb     xmm0, [edi+12*16] 
        paddusb     xmm1, [edi+13*16] 
        paddusb     xmm2, [edi+14*16] 
        paddusb     xmm3, [edi+15*16] 
        paddusb     xmm0, xmm1 
        paddusb     xmm2, xmm3 
        paddusb     xmm0, xmm2 
 
        add         edi, 256 
        sub         eax, 256 
 
        movdqa      xmm1, xmm0 
        punpcklbw   xmm0, xmm7 
        punpckhbw   xmm1, xmm7 
        paddusw     xmm0, xmm1 
        movdqa      xmm1, xmm0 
        punpcklwd   xmm0, xmm7 
        punpckhwd   xmm1, xmm7 
        paddd       xmm0, xmm1 
        paddd       xmm6, xmm0 
 
        jge         loop256 
 
    run16: 
        pxor        xmm0, xmm0 
        add         eax, 256 - 16 
        jl          run4 
 
    loop16: 
        paddusb     xmm0, [edi] 
        add         edi, 16 
        sub         eax, 16 
        jge         loop16 
 
    run4: 
        add         eax, 16 - 4 
        jl          run1 
 
        pxor        xmm1, xmm1 
 
    loop4: 
        movd        xmm1, [edi] 
        paddusb     xmm0, xmm1 
        add         edi, 4 
        sub         eax, 4 
        jge         loop4 



 
    run1: 
        movdqa      xmm1, xmm0 
        punpcklbw   xmm0, xmm7 
        punpckhbw   xmm1, xmm7 
        paddusw     xmm0, xmm1 
        movdqa      xmm1, xmm0 
        punpcklwd   xmm0, xmm7 
        punpckhwd   xmm1, xmm7 
        paddd       xmm0, xmm1 
        paddd       xmm6, xmm0 
 
        movdqa      n, xmm6 
        add         eax, 4-1 
        jl          done 
 
        mov         edx, dword ptr n 
 
    loop1: 
        movzx       ecx, [edi] 
        add         edx, ecx 
        add         edi, 1 
        sub         eax, 1 
        jge         loop1 
 
        mov         dword ptr n, edx 
 
    done: 
    } 
 
    return n[0] + n[1] + n[2] + n[3]; 
} 

Appendix D  
/* 
    SSE Optimized Culling and Counting of Facing Triangles 
    Copyright (C) 2005 Id Software, Inc. 
    Written by J.M.P. van Waveren 
 
    This code is free software; you can redistribute it and/or 
    modify it under the terms of the GNU Lesser General Public 
    License as published by the Free Software Foundation; either 
    version 2.1 of the License, or (at your option) any later version. 
 
    This code is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU 
    Lesser General Public License for more details. 
*/ 
 
ALIGN16_INIT1( unsigned char SIMD_B_one, 1 ); 
 
int CountFacingCull( byte *facing, const int numTriangles, int *indices, const byte *cullBits ) { 
    ALIGN16( int n[4]; ) 
 
    __asm { 
        push        ebx 
        mov         eax, numFaces 
        mov         esi, indices 
        mov         edi, cull 
        mov         ebx, facing 
        test        eax, eax 
        jz          done 
        add         ebx, eax 
        neg         eax 
 
        pxor        xmm5, xmm5 
        pxor        xmm6, xmm6 
        movdqa      xmm7, SIMD_B_one 
 
        add         eax, 4 
        jg          run1 
 
    loop4: 
 
        mov         ecx, dword ptr [esi+0*4] 
        movzx       edx, byte ptr [edi+ecx] 
        mov         ecx, dword ptr [esi+1*4] 



        and         dl, byte ptr [edi+ecx] 
        mov         ecx, dword ptr [esi+2*4] 
        and         dl, byte ptr [edi+ecx] 
 
        mov         ecx, dword ptr [esi+3*4] 
        mov         dh, byte ptr [edi+ecx] 
        mov         ecx, dword ptr [esi+4*4] 
        and         dh, byte ptr [edi+ecx] 
        mov         ecx, dword ptr [esi+5*4] 
        and         dh, byte ptr [edi+ecx] 
        movd        xmm0, edx 
 
        mov         ecx, dword ptr [esi+6*4] 
        movzx       edx, byte ptr [edi+ecx] 
        mov         ecx, dword ptr [esi+7*4] 
        and         dl, byte ptr [edi+ecx] 
        mov         ecx, dword ptr [esi+8*4] 
        and         dl, byte ptr [edi+ecx] 
 
        mov         ecx, dword ptr [esi+9*4] 
        mov         dh, byte ptr [edi+ecx] 
        mov         ecx, dword ptr [esi+10*4] 
        and         dh, byte ptr [edi+ecx] 
        mov         ecx, dword ptr [esi+11*4] 
        and         dh, byte ptr [edi+ecx] 
        pinsrw      xmm0, edx, 1 
 
        add         esi, 12*4 
 
        movd        xmm1, [ebx+eax-4] 
        pcmpgtb     xmm0, xmm6 
        pand        xmm0, xmm7 
        por         xmm1, xmm0 
        movd        [ebx+eax-4], xmm1 
 
        add         eax, 4 
 
        punpcklbw   xmm1, xmm6 
        punpcklwd   xmm1, xmm6 
        paddd       xmm5, xmm1 
 
        jle         loop4 
 
    run1: 
        sub         eax, 4 
        jge         done 
 
    loop1: 
        mov         ecx, dword ptr [esi+0*4] 
        movzx       edx, byte ptr [edi+ecx] 
        mov         ecx, dword ptr [esi+1*4] 
        and         dl, byte ptr [edi+ecx] 
        mov         ecx, dword ptr [esi+2*4] 
        and         dl, byte ptr [edi+ecx] 
 
        neg         edx 
        shr         edx, 31 
        movzx       ecx, byte ptr [ebx+eax] 
        or          ecx, edx 
        mov         byte ptr [ebx+eax], cl 
        movd        xmm0, ecx 
        paddd       xmm5, xmm0 
 
        add         esi, 3*4 
        add         eax, 1 
        jl          loop1 
 
    done: 
        pop         ebx 
        movdqa      dword ptr n, xmm5 
    } 
 
    return n[0] + n[1] + n[2] + n[3]; 
} 

 



Appendix E  
/* 
    SSE Optimized Construction of Shadow Volume Silhouette Triangles 
    Copyright (C) 2005 Id Software, Inc. 
    Written by J.M.P. van Waveren 
 
    This code is free software; you can redistribute it and/or 
    modify it under the terms of the GNU Lesser General Public 
    License as published by the Free Software Foundation; either 
    version 2.1 of the License, or (at your option) any later version. 
 
    This code is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU 
    Lesser General Public License for more details. 
*/ 
 
struct SilEdge { 
    int p1, p2;     // planes defining the edge 
    int v1, v2;     // verts defining the edge 
}; 
 
int CreateSilTriangles( int *shadowIndices, const byte *facing, const SilEdge *silEdges, const int numSilEdges ) 
{ 
    int num; 
 
    __asm { 
        push        ebx 
        mov         eax, numSilEdges 
        mov         ebx, shadowIndexes 
        mov         esi, facing 
        mov         edi, silEdges 
        shl         eax, 4 
        jz          done 
        add         edi, eax 
        neg         eax 
        shr         ebx, 3 
 
        add         eax, 4*16 
        jg          run1 
 
    loop4: 
        mov         ecx, dword ptr [edi+eax-4*16+0] 
        movzx       ecx, byte ptr [esi+ecx] 
        movd        xmm2, ecx 
        mov         edx, dword ptr [edi+eax-4*16+4] 
        movzx       edx, byte ptr [esi+edx] 
        pinsrw      xmm2, edx, 2 
        movq        xmm0, qword ptr [edi+eax-4*16+8] 
        pshufd      xmm1, xmm2, R_SHUFFLE_D( 2, 0, 1, 1 ) 
        xor         ecx, edx 
        pshufd      xmm0, xmm0, R_SHUFFLE_D( 0, 1, 1, 0 ) 
        lea         edx, [ecx*2+ecx] 
        pxor        xmm0, xmm1 
        add         edx, ebx 
        movlps      qword ptr [ebx*8+0*4], xmm0 
        pxor        xmm2, xmm0 
        movhps      qword ptr [ebx*8+2*4], xmm0 
        movlps      qword ptr [ebx*8+4*4], xmm2 
 
        mov         ecx, dword ptr [edi+eax-3*16+0] 
        movzx       ecx, byte ptr [esi+ecx] 
        movd        xmm3, ecx 
        mov         ebx, dword ptr [edi+eax-3*16+4] 
        movzx       ebx, byte ptr [esi+ebx] 
        pinsrw      xmm3, ebx, 2 
        movq        xmm0, qword ptr [edi+eax-3*16+8] 
        pshufd      xmm1, xmm3, R_SHUFFLE_D( 2, 0, 1, 1 ) 
        xor         ecx, ebx 
        pshufd      xmm0, xmm0, R_SHUFFLE_D( 0, 1, 1, 0 ) 
        lea         ebx, [ecx*2+ecx] 
        pxor        xmm0, xmm1 
        add         ebx, edx 
        movlps      qword ptr [edx*8+0*4], xmm0 
        pxor        xmm3, xmm0 
        movhps      qword ptr [edx*8+2*4], xmm0 
        movlps      qword ptr [edx*8+4*4], xmm3 
 
        mov         ecx, dword ptr [edi+eax-2*16+0] 



        movzx       ecx, byte ptr [esi+ecx] 
        movd        xmm2, ecx 
        mov         edx, dword ptr [edi+eax-2*16+4] 
        movzx       edx, byte ptr [esi+edx] 
        pinsrw      xmm2, edx, 2 
        movq        xmm0, qword ptr [edi+eax-2*16+8] 
        pshufd      xmm1, xmm2, R_SHUFFLE_D( 2, 0, 1, 1 ) 
        xor         ecx, edx 
        pshufd      xmm0, xmm0, R_SHUFFLE_D( 0, 1, 1, 0 ) 
        lea         edx, [ecx*2+ecx] 
        pxor        xmm0, xmm1 
        add         edx, ebx 
        movlps      qword ptr [ebx*8+0*4], xmm0 
        pxor        xmm2, xmm0 
        movhps      qword ptr [ebx*8+2*4], xmm0 
        movlps      qword ptr [ebx*8+4*4], xmm2 
 
        mov         ecx, dword ptr [edi+eax-1*16+0] 
        movzx       ecx, byte ptr [esi+ecx] 
        movd        xmm3, ecx 
        mov         ebx, dword ptr [edi+eax-1*16+4] 
        movzx       ebx, byte ptr [esi+ebx] 
        pinsrw      xmm3, ebx, 2 
        movq        xmm0, qword ptr [edi+eax-1*16+8] 
        pshufd      xmm1, xmm3, R_SHUFFLE_D( 2, 0, 1, 1 ) 
        xor         ecx, ebx 
        pshufd      xmm0, xmm0, R_SHUFFLE_D( 0, 1, 1, 0 ) 
        lea         ebx, [ecx*2+ecx] 
        pxor        xmm0, xmm1 
        add         ebx, edx 
        movlps      qword ptr [edx*8+0*4], xmm0 
        pxor        xmm3, xmm0 
        movhps      qword ptr [edx*8+2*4], xmm0 
        add         eax, 4*16 
        movlps      qword ptr [edx*8+4*4], xmm3 
 
        jle         loop4 
 
    run1: 
        sub         eax, 4*16 
        jge         done 
 
    loop1: 
        mov         ecx, dword ptr [edi+eax+0] 
        movzx       ecx, byte ptr [esi+ecx] 
        movd        xmm2, ecx 
        mov         edx, dword ptr [edi+eax+4] 
        movzx       edx, byte ptr [esi+edx] 
        pinsrw      xmm2, edx, 2 
        movq        xmm0, qword ptr [edi+eax+8] 
        pshufd      xmm1, xmm2, R_SHUFFLE_D( 2, 0, 1, 1 ) 
        pshufd      xmm0, xmm0, R_SHUFFLE_D( 0, 1, 1, 0 ) 
        pxor        xmm0, xmm1 
        movlps      qword ptr [ebx*8+0*4], xmm0 
        movhps      qword ptr [ebx*8+2*4], xmm0 
        pxor        xmm2, xmm0 
        movlps      qword ptr [ebx*8+4*4], xmm2 
        xor         ecx, edx 
        lea         edx, [ecx*2+ecx] 
        add         ebx, edx 
 
        add         eax, 16 
        jl          loop1 
 
    done: 
        shl         ebx, 3 
        mov         num, ebx 
        pop         ebx 
    } 
 
    return ( num - (int)shadowIndexes ) >> 2; 
} 

Appendix F  
/* 
    SSE Optimized Construction of Shadow Volume Cap Triangles 
    Copyright (C) 2005 Id Software, Inc. 
    Written by J.M.P. van Waveren 



 
    This code is free software; you can redistribute it and/or 
    modify it under the terms of the GNU Lesser General Public 
    License as published by the Free Software Foundation; either 
    version 2.1 of the License, or (at your option) any later version. 
 
    This code is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU 
    Lesser General Public License for more details. 
*/ 
 
ALIGN4_INIT4( unsigned long SIMD_DW_capTris_c0, 0, 0, 0, 1 ); 
ALIGN4_INIT4( unsigned long SIMD_DW_capTris_c1, 1, 1, 0, 0 ); 
ALIGN4_INIT4( unsigned long SIMD_DW_capTris_c2, 0, 1, 0, 0 ); 
 
int CreateCapTriangles( int *shadowIndices, const byte *facing, const int *indices, const int numIndices ) {
    int num = numIndexes / 3; 
 
    __asm { 
        push        ebx 
        mov         eax, numIndexes 
        mov         ebx, shadowIndexes 
        mov         esi, facing 
        mov         edi, indexes 
        shl         eax, 2 
        jz          done 
        add         edi, eax 
        mov         eax, num 
        add         esi, eax 
        neg         eax 
        shr         ebx, 3 
 
        movaps      xmm6, SIMD_DW_capTris_c0 
        movaps      xmm7, SIMD_DW_capTris_c1 
        movaps      xmm5, SIMD_DW_capTris_c2 
 
        add         eax, 4 
        lea         edx, [eax*2+eax] 
        jg          run1 
 
    loop4: 
        movdqa      xmm0, [edi+edx*4-4*3*4+0]                   // xmm0 =  0,  1,  2,  3 
        paddd       xmm0, xmm0 
        pshufd      xmm1, xmm0, R_SHUFFLE_D( 2, 1, 0, 0 )       // xmm1 =  2,  1,  0,  0 
        movzx       ecx, byte ptr [esi+eax-4] 
        pshufd      xmm2, xmm0, R_SHUFFLE_D( 1, 2, 1, 2 )       // xmm2 =  1,  2,  1,  2 
        sub         ecx, 1 
        pxor        xmm1, xmm6 
        and         ecx, 3 
        movlps      qword ptr [ebx*8+0*4], xmm1 
        add         ecx, ebx 
        movhps      qword ptr [ebx*8+2*4], xmm1 
        pxor        xmm2, xmm7 
        movlps      qword ptr [ebx*8+4*4], xmm2 
 
        movdqa      xmm3, [edi+edx*4-3*3*4+4]                   // xmm3 =  4,  5,  6,  7 
        paddd       xmm3, xmm3 
        shufps      xmm0, xmm3, R_SHUFFLE_D( 3, 3, 1, 0 )       // xmm0 =  3   3,  5,  4 
        movzx       ebx, byte ptr [esi+eax-3] 
        movdqa      xmm2, xmm3                                  // xmm2 =  4,  5,  6,  7 
        sub         ebx, 1 
        pxor        xmm0, xmm5 
        and         ebx, 3 
        movhps      qword ptr [ecx*8+0*4], xmm0 
        add         ebx, ecx 
        movlps      qword ptr [ecx*8+2*4], xmm0 
        pxor        xmm2, xmm7 
        movlps      qword ptr [ecx*8+4*4], xmm2 
 
        movdqa      xmm0, [edi+edx*4-1*3*4-4]                   // xmm0 =  8,  9, 10, 11 
        paddd       xmm0, xmm0 
        shufps      xmm3, xmm0, R_SHUFFLE_D( 2, 3, 0, 1 )       // xmm3 =  6,  7,  8,  9 
        pshufd      xmm1, xmm3, R_SHUFFLE_D( 2, 1, 0, 0 )       // xmm1 =  8,  7,  6,  6 
        movzx       ecx, byte ptr [esi+eax-2] 
        pshufd      xmm2, xmm3, R_SHUFFLE_D( 1, 2, 1, 2 )       // xmm2 =  7,  8,  7,  8 
        sub         ecx, 1 
        pxor        xmm1, xmm6 
        and         ecx, 3 
        movlps      qword ptr [ebx*8+0*4], xmm1 
        add         ecx, ebx 



        movhps      qword ptr [ebx*8+2*4], xmm1 
        pxor        xmm2, xmm7 
        movlps      qword ptr [ebx*8+4*4], xmm2 
 
        pshufd      xmm1, xmm0, R_SHUFFLE_D( 3, 2, 1, 1 ) 
        movzx       ebx, byte ptr [esi+eax-1] 
        pshufd      xmm2, xmm0, R_SHUFFLE_D( 2, 3, 2, 3 ) 
        sub         ebx, 1 
        pxor        xmm1, xmm6 
        and         ebx, 3 
        movlps      qword ptr [ecx*8+0*4], xmm1 
        add         ebx, ecx 
        movhps      qword ptr [ecx*8+2*4], xmm1 
        pxor        xmm2, xmm7 
        movlps      qword ptr [ecx*8+4*4], xmm2 
 
        add         edx, 3*4 
        add         eax, 4 
        jle         loop4 
 
    run1: 
        sub         eax, 4 
        jge         done 
 
    loop1: 
        lea         edx, [eax*2+eax] 
        movdqu      xmm0, [edi+edx*4+0] 
        paddd       xmm0, xmm0 
        pshufd      xmm1, xmm0, R_SHUFFLE_D( 2, 1, 0, 0 ) 
        pshufd      xmm2, xmm0, R_SHUFFLE_D( 1, 2, 1, 2 ) 
        pxor        xmm1, xmm6 
        movlps      qword ptr [ebx*8+0*4], xmm1 
        pxor        xmm2, xmm7 
        movhps      qword ptr [ebx*8+2*4], xmm1 
        movzx       ecx, byte ptr [esi+eax] 
        movlps      qword ptr [ebx*8+4*4], xmm2 
        sub         ecx, 1 
        and         ecx, 3 
        add         ebx, ecx 
 
        add         eax, 1 
        jl          loop1 
 
    done: 
        shl         ebx, 3 
        mov         num, ebx 
        pop         ebx 
    } 
 
    return ( num - (int)shadowIndexes ) >> 2; 
} 
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