
Slerping Clock Cycles
February 27th 2005
J.M.P. van Waveren

© 2005, Id Software, Inc.

Abstract
An optimized spherical l inear interpolation (Slerp) between two quaternions is

presented. This optimized Slerp transforms the more commonly used trigonometric

functions to mathematically equivalent functions that can be replaced with fast and

accurate polynomial approximations. Furthermore the Intel Streaming SIMD Extensions

are used to further improve the performance. The end result is a Slerp routine which is

more than 7 times faster than the commonly used implementation in C. Furthermore the

optimized Slerp is very accurate and actually two times faster than linear interpolation

with renormalization (Lerp) in C.

1. Introduction
Quaternions can describe any rotation about any axis in 3D space and, unlike Euler

angles, quaternions do not present issues like "gimbal lock". With Euler angles there

are orientations in which there may not exist a simple change to the angles to represent

a certain local rotation. Quaternions are small and efficient and are often a good

replacement for rotation matrices. They take up less space, only 4 scalars as opposed

to 9 for a 3x3 rotation matrix. Quaternion multiplication is also more efficient than

matrix multiplication and a quaternion can be easily and quickly converted to a rotation

matrix where necessary. These properties make quaternions ideal for many algorithms

and systems like for instance an animation system. Such an animation system often

uses interpolation between quaternions to generate rotations in between key frames.

Different animations can also be blended together to achieve smooth transitions from

one animation to another. As it turns out interpolation between two general rotations is

not trivial and can be computationally expensive. However, quaternions are generally

the best representation for interpolating orientations and there are several different

approaches with different properties and different computational costs.

1.1 Previous Work

The quaternion was first introduced by Will iam Rowan Hamilton (1805 - 1865) as a

successor to complex numbers [1]. Arthur Cayley (1821 - 1895) contributed further by

describing rotations with quaternion multiplication [2]. Ken Shoemake popularized

quaternions in the world of computer graphics to avoid common problems such as

"gimbal lock" [6]. Quaternions have since found their way into many different systems

among which animation, inverse kinematics and physics.

Quaternions are often used for the interpolation between general rotations. Usually

three properties are desired when interpolating rotations: minimal torque, constant

velocity, commutativity. There are three general approaches to quaternion

interpolation, and each of these approaches gives two of the three desirable properties.

First there is the spherical l inear interpolation also known as Slerp which was

popularized by Ken Shoemake [6]. Slerp has both constant velocity and minimal torque

but is not commutative. Furthermore there is the linear interpolation with

renormalization also known as Lerp which is also discussed by Ken Shoemake [6]. Lerp

is commutative and has minimal torque but does not maintain a constant velocity.

Finally there is the log-quaternion lerp, also known as exponential map interpolation as

described by Grassia [11]. The exponential map interpolation is commutative and

maintains a constant velocity but is not torque minimal.

The spherical l inear interpolation (Slerp) of quaternions is often considered the optimal

interpolation curve between two general rotations. The evaluation of the Slerp function

involves several trigonometric functions and is computationally expensive. Several

attempts to optimize the Slerp function with mixed results can be found in literature

[27,28,29,30].

1.2 Layout

Section 2 shows some properties of quaternions. Section 3 describes spherical l inear

interpolation between two quaternions. Linear interpolation with renormalization is

presented in section 4. In section 5 spherical l inear interpolation between two

quaternions is optimized. Section 6 goes into the details of implementing SIMD

optimized code for spherical l inear interpolation. The results of the various

optimizations are presented in section 7 and several conclusions are drawn in section 8.

2. Quaternions
The unit quaternion sphere is equivalent to the space of general rotations. Throughout

this article quaternions will represent general rotations. The four components of a

quaternion are denoted (x, y, z, w) and the quaternion will be represented in code as

follows.

struct Quaternion {
 float x, y, z, w;
};

A quaternion (x, y, z, w) which represents a general rotation can be interpreted

geometrically as follows.

x = X · sin(α / 2)
y = Y · sin(α / 2)
z = Z · sin(α / 2)
w = cos(α / 2)

Here (X, Y, Z) is the unit length axis of rotation in 3D space and α is the angle of
rotation about the axis in radians. This interpretation shows that the quaternion (x, y,
z, w) describes the same general rotation as the quaternion (-x, -y, -z, -w) because a

rotation defined by an axis and an angle is equivalent to the rotation defined by the
opposite axis and negated angle. From sin2(α) + cos2(α) = 1 and the fact that the
axis of rotation is unit length follows that the following holds for quaternions that
represent general rotations: x2 + y2 + z2 + w2 = 1, which describes the unit
quaternion sphere.

A quaternion is small and efficient and can easily be converted to a rotation matrix.

Therefore quaternions are often used in skeletal animation systems to describe the

orientation of joints. Such an animation system often uses key frames described by

quaternions and positions and requires interpolation between key frames to display

smooth motion.

Quaternions can be used for the interpolation between general rotations by using four-

dimensional vector interpolation. Given two quaternions q0 and q1 and a parameter t in

the range [0, 1] the general formula for the interpolation between q0 and q1 is given

by:

q(t) = f0(t) · q0 + f1(t) · q1

where f0 and f1 are scalar functions such that f0(0) = 1, f0(1) = 0, f1(0) = 0 and f1(1) =

1. The exact course of the functions f0 and f1 may vary based on the desired properties

of the interpolation.

3. Slerp
The interpolation curve for spherical l inear interpolation forms the shortest great arc on

the quaternion unit sphere. Slerp has constant angular velocity and is often considered

the optimal interpolation curve between two general rotations.

Given two quaternions q0 and q1 and a parameter t in the range [0,1] the spherical

l inear interpolation is defined as follows:

sin((1 - t) · α) sin(t · α)
q(t) =

sin(α)
 · q0 +

sin(α)
 · q1

Where α is the angle between q0 and q1 which can be calculated from the dot product of
the two quaternions.

cos(α) = q0 · q1

The following code implements the spherical l inear interpolation between two

quaternions.

void Slerp(const Quaternion &from, const Quaternion &to, float t, Quaternion &result) {
 float cosom, absCosom, sinom, omega, scale0, scale1;

 cosom = from.x * to.x + from.y * to.y + from.z * to.z + from.w * to.w;
 absCosom = fabs(cosom);
 if ((1.0f - absCosom) > 1e-6f) {
 omega = acos(absCosom);
 sinom = 1.0f / sin(omega);
 scale0 = sin((1.0f - t) * omega) * sinom;

 scale1 = sin(t * omega) * sinom;
 } else {
 scale0 = 1.0f - t;
 scale1 = t;
 }
 scale1 = (cosom >= 0.0f) ? scale1 : -scale1;
 result.x = scale0 * from.x + scale1 * to.x;
 result.y = scale0 * from.y + scale1 * to.y;
 result.z = scale0 * from.z + scale1 * to.z;
 result.w = scale0 * from.w + scale1 * to.w;
}

Although the above routine is fairly small, even in assembler code, the routine may

consume a significant number of clock cycles on today's hardware. When used to

interpolate between many quaternions, for instance in an animation system, this routine

can easily cause performance problems.

4. Lerp
Spherical l inear interpolation between two quaternions can be approximated with a

linear interpolation with renormalization (Lerp). The interpolation traces out the exact

same curve as Slerp, but does not maintain a constant speed across the arc. The

speedup in the middle is due to the fact that the interpolation curve takes a short cut

below the surface of the unit sphere.

The following code implements the Lerp. No trigonometric functions are used and the

code is significantly faster than the Slerp code above.

Lerp(const Quaternion &from, const Quaternion &to, float t, Quaternion &result) {
 float cosom, scale0, scale1, s;

 cosom = from.x * to.x + from.y * to.y + from.z * to.z + from.w * to.w;

 scale0 = 1.0f - t;
 scale1 = (cosom >= 0.0f) ? t : -t;

 result.x = scale0 * from.x + scale1 * to.x;
 result.y = scale0 * from.y + scale1 * to.y;
 result.z = scale0 * from.z + scale1 * to.z;
 result.w = scale0 * from.w + scale1 * to.w;

 s = 1.0f / sqrt(result.x * result.x + result.y * result.y + result.z * result.z + result.w * result.w);

 result.x *= s;
 result.y *= s;
 result.z *= s;
 result.w *= s;
}

For many purposes the non-constant velocity is not or hardly noticeable. Especially for

rotations over small angles the above routine may be a good alternative to the slower

Slerp. However, other applications may require the velocity to be a constant function

across the arc and spherical l inear interpolation may be the preferred method.

Fortunately Slerp does not have to be slower than the above routine as shown in the

next sections.

5. Optimizing Slerp
What exactly makes Slerp so slow? Slerp uses several trigonometric functions that are

not particularly fast on today's hardware. The arc cosine is usually a math library

function which evaluates a square root and an arc tangent function. On an Intel Pentium

these translate to an 'fsqrt' and an 'fpatan' instruction respectively. Both instructions

have high latency and stall the FPU for many clock cycles. Next Slerp calculates the

reciprocal of the sine of the angle between the quaternions. On an Intel Pentium this

calculation typically uses the 'fsin' instruction with a dependent 'fdiv' instruction. Both

these instructions have high latency and throughput. Furthermore the quaternion scale

factors are calculated with two more sine functions that also translate to expensive

'fsin' instructions. All together this amounts to many clock cycles spent evaluating

trigonometric functions.

Fortunately the following fundamental identities can be used to transform the

trigonometric functions into functions that can be evaluated much faster on today's

hardware.

sin2(α) + cos2(α) = 1

sin(α)
tan(α) =

cos(α)

The cosine of the angle between the two quaternions is known. Using the first identity

shown above the sine can be trivially calculated from the cosine as follows.

sin(α) = √ 1 - cos2(α)

Because the square of the cosine is used any sign information would be lost in the

above calculation. However, Slerp uses the absolute value of the cosine so no special

handling is required.

Once both the sine and cosine of the angle are available there really is no need to use

an expensive arc cosine function to calculate the actual angle between the quaternions.

The second identity shown above can be used to calculate the angle from the sine and

the cosine. The following code shows the new Slerp.

void SlerpTransformed(const Quaternion &from, const Quaternion &to, float t, Quaternion &result) {
 float cosom, absCosom, sinom, sinSqr, omega, scale0, scale1;

 cosom = from.x * to.x + from.y * to.y + from.z * to.z + from.w * to.w;
 absCosom = fabs(cosom);
 if ((1.0f - absCosom) > 1e-6f) {
 sinSqr = 1.0f - absCosom * absCosom;
 sinom = 1.0f / sqrt(sinSqr);
 omega = atan2(sinSqr * sinom, absCosom);
 scale0 = sin((1.0f - t) * omega) * sinom;
 scale1 = sin(t * omega) * sinom;
 } else {
 scale0 = 1.0f - t;
 scale1 = t;
 }
 scale1 = (cosom >= 0.0f) ? scale1 : -scale1;
 result.x = scale0 * from.x + scale1 * to.x;
 result.y = scale0 * from.y + scale1 * to.y;
 result.z = scale0 * from.z + scale1 * to.z;
 result.w = scale0 * from.w + scale1 * to.w;
}

Looking at the FPU assembler code for the above routine there are now one 'fsqrt'

instruction, one 'fdiv' instruction, one 'fpatan' instruction and two 'fsin' instructions. In

the original routine there are one 'fsqrt' instruction, one 'fdiv' instruction, one 'fpatan'

instruction and three 'fsin' instructions. In other words the new routine has one 'fsin'

instruction less than the original routine.

The 1.0f / sqrt() can be replaced with a slightly faster approximation [16,17,18]. The

following approximation does not use the expensive division and also avoids the

expensive square root calculation.

float ReciprocalSqrt(float x) {
 long i;
 float y, r;

 y = x * 0.5f;
 i = *(long *)(&x);
 i = 0x5f3759df - (i >> 1);
 r = *(float *)(&i);
 r = r * (1.5f - r * r * y);
 return r;
}

When looking at the parameters to the trigonometric functions some key observations

can be made. Both parameters to the arc tangent function are always positive and the

parameters to the sine functions are always in the range [0, PI/2]. This allows the

trigonometric functions to be replaced with fast and accurate polynomial approximations

without the need for time consuming range reductions.

When the angle is always in the range [0, PI/2] the sine function can be replaced with a

polynomial approximation without the need for any logic [19,20,21,22]. The following

function approximates the sine function for angles in the range [0, PI/2]. The maximum

absolute error is 2.308 x 10-9.

float SinZeroHalfPI(float a) {
 float s, t;

 s = a * a;
 t = -2.39e-08f;
 t *= s;
 t += 2.7526e-06f;
 t *= s;
 t += -1.98409e-04f;
 t *= s;
 t += 8.3333315e-03f;
 t *= s;
 t += -1.666666664e-01f;
 t *= s;
 t += 1.0f;
 t *= a;
 return t;
}

When both parameters are always positive the arc tangent function can be replaced with

a polynomial approximation without the need for range reduction [19,20,21,22]. The

following function approximates the arc tangent function with a maximum absolute error

of 1.359 x 10-8.

float ATanPositive(float y, float x) {
 float a, d, s, t;

 if (y > x) {
 a = -x / y;
 d = M_PI / 2;
 } else {
 a = y / x;
 d = 0.0f;
 }
 s = a * a;
 t = 0.0028662257f;
 t *= s;

 t += -0.0161657367f;
 t *= s;
 t += 0.0429096138f;
 t *= s;
 t += -0.0752896400f;
 t *= s;
 t += 0.1065626393f;
 t *= s;
 t += -0.1420889944f;
 t *= s;
 t += 0.1999355085f;
 t *= s;
 t += -0.3333314528f;
 t *= s;
 t += 1.0f;
 t *= a;
 t += d;
 return t;
}

The arc cosine in the original routine could also have been approximated directly with a

polynomial without using the fundamental identities to transform the trigonometric

functions. However, an accurate polynomial approximation of the arc cosine is much

more expensive than an accurate polynomial approximation of the arc tangent.

The following code shows the optimized Slerp which uses the polynomial approximations

for the trigonometric functions.

void SlerpOptimized(const Quaternion &from, const Quaternion &to, float t, Quaternion &result) {
 float cosom, absCosom, sinom, sinSqr, omega, scale0, scale1;

 cosom = from.x * to.x + from.y * to.y + from.z * to.z + from.w * to.w;
 absCosom = fabs(cosom);
 if ((1.0f - absCosom) > 1e-6f) {
 sinSqr = 1.0f - absCosom * absCosom;
 sinom = ReciprocalSqrt(sinSqr);
 omega = ATanPositive(sinSqr * sinom, absCosom);
 scale0 = SinZeroHalfPI((1.0f - t) * omega) * sinom;
 scale1 = SinZeroHalfPI(t * omega) * sinom;
 } else {
 scale0 = 1.0f - t;
 scale1 = t;
 }
 scale1 = (cosom >= 0.0f) ? scale1 : -scale1;
 result.x = scale0 * from.x + scale1 * to.x;
 result.y = scale0 * from.y + scale1 * to.y;
 result.z = scale0 * from.z + scale1 * to.z;
 result.w = scale0 * from.w + scale1 * to.w;
}

The above optimized Slerp is typically faster on today's hardware, especially if the two

sine calculations are inlined and properly interleaved. Slerp can be made even faster on

today's SIMD capable architectures as shown in the next section.

6. SSE Optimized Slerp
Most algorithms do not use a single isolated spherical l inear interpolation between two

quaternions. For instance a skeletal animation system usually requires interpolation

between two key frames. Each of the key frames is a list with joints that define a pose

of the skeleton. A joint from a key frame is stored as a quaternion for the orientation

and a 4D vector for the position. The SSE optimized routine presented here will

interpolate between two lists with joints as shown below.

struct Vec4 {
 float x, y, z, w;
};

struct JointQuat {
 Quaternion q;
 Vec4 t;
};

void Vec4Lerp(const Vec4 &from, const Vec4 &to, const float t, Vec4 &result) {
 float s = 1.0f - t;
 result.x = from.x * s + to.x * t;
 result.y = from.y * s + to.y * t;
 result.z = from.z * s + to.z * t;
 result.w = from.w * s + to.w * t;
}

void SlerpJoints(JointQuat *joints, const JointQuat *blendJoints, const float lerp, const int *index, const int
numJoints) {
 int i;

 for (i = 0; i < numJoints; i++) {
 int j = index[i];
 Slerp(joints[j].q, blendJoints[j].q, lerp, joints[j].q);
 Vec4Lerp(joints[j].t, blendJoints[j].t, lerp, joints[j].t);
 }
}

An additional index is used in the above code to allow a selection of joints from the two

lists to be interpolated instead of the complete lists. This may be useful for an

animation system where during certain animations only a subset of all the joints are

animated.

The best approach to SIMD is usually to exploit parallelism through increased

throughput. The routine presented here will interpolate between four pairs of joints per

iteration.

The interpolation of the positions stored with the joints is best calculated individually

for each pair of joints. After all this interpolation is no more than the addition of two

scaled 4D vectors which trivially maps to SSE instructions.

For the interpolation of the quaternions the scalar instructions are best replaced with

functionally equivalent SSE instructions. This requires a swizzle because the

quaternions are stored per joint while the individual components of four quaternions

need to be grouped into SSE registers. For this swizzle four quaternions are loaded into

four SSE registers as a 4x4 matrix. This 4x4 matrix is then transposed in the registers

with several unpack and shuffle instructions.

After the swizzle the scalar instructions of the optimized Slerp routine can be replaced

with functionally equivalent SSE instructions. This is trivial for the most part but

several details need to be worked out.

The Intel SSE instruction set has an instruction to calculate the reciprocal square root

with 12 bits of precision. A simple Newton-Rapson iteration can be used to improve the

accuracy [24]. The following assembler code calculates the reciprocal square root of the

four floating point numbers stored in the 'xmm0' register. The result is stored in the

same register.

#define ALIGN4_INIT1(X, I) __declspec(align(16)) static X[4] = { I, I, I, I }

ALIGN4_INIT1(float SIMD_SP_rsqrt_c0, 3.0f);
ALIGN4_INIT1(float SIMD_SP_rsqrt_c1, -0.5f);

rsqrtps xmm1, xmm0
mulps xmm0, xmm1
mulps xmm0, xmm1
subps xmm0, SIMD_SP_rsqrt_c0

mulps xmm1, SIMD_SP_rsqrt_c1
mulps xmm0, xmm1

The polynomial approximation of the sine function in the range [0, PI/2] is trivially

implemented with SSE instructions. The following code calculates four sines for the

angles stored in 'xmm0' and the result is stored in 'xmm2'.

ALIGN4_INIT1(float SIMD_SP_sin_c0, -2.39e-08f);
ALIGN4_INIT1(float SIMD_SP_sin_c1, 2.7526e-06f);
ALIGN4_INIT1(float SIMD_SP_sin_c2, -1.98409e-04f);
ALIGN4_INIT1(float SIMD_SP_sin_c3, 8.3333315e-03f);
ALIGN4_INIT1(float SIMD_SP_sin_c4, -1.666666664e-01f);
ALIGN4_INIT1(float SIMD_SP_one, 1.0f);

movaps xmm1, xmm0
mulps xmm1, xmm1
movaps xmm2, SIMD_SP_sin_c0
mulps xmm2, xmm1
addps xmm2, SIMD_SP_sin_c1
mulps xmm2, xmm1
addps xmm2, SIMD_SP_sin_c2
mulps xmm2, xmm1
addps xmm2, SIMD_SP_sin_c3
mulps xmm2, xmm1
addps xmm2, SIMD_SP_sin_c4
mulps xmm2, xmm1
addps xmm2, SIMD_SP_one
mulps xmm2, xmm0

The logic at the beginning of the arc tangent approximation is a bit trickier to

implement with SSE instructions. Basically the smallest of the two parameters is divided

by the largest one. If 'y' is larger than 'x' the result of the division is negated and PI/2

is added to the result of the polynomial. The 'minps' and 'maxps' instructions can be

used to select the minimum and the maximum of the two parameters. The 'cmpeqps'

instruction can then be used to compare 'x' with the minimum of the two parameters. If

'x' is equal to the minimum then the 'cmpeqps' instruction fil ls the result register with

all ones and if 'x' is the maximum then the result register is fi l led with all zeros. This

bit mask can be used to either leave or fl ip the sign bit of the result of the division, and

also to add either zero or PI/2 to the result of the polynomial. The following SSE code

implements the logic for the arc tangent approximation.

#define IEEE_SP_SIGN ((unsigned long) (1 << 31))

ALIGN4_INIT1(float SIMD_SP_halfPI, M_PI/2);
ALIGN4_INIT1(unsigned long SIMD_SP_signBit, IEEE_SP_SIGN);

movaps xmm3, xmm0
minps xmm0, xmm1 // xmm0 = (y > x) ? x : y
maxps xmm1, xmm3 // xmm1 = (y > x) ? y : x
cmpeqps xmm3, xmm0 // xmm3 = (y > x) ? 0xFFFFFFFF : 0x00000000
divps xmm0, xmm1 // xmm0 = (y > x) ? x / y : y / x
movaps xmm1, xmm3
andps xmm1, SIMD_SP_signBit // xmm1 = (y > x) ? 0x80000000 : 0x00000000
xorps xmm0, xmm1 // xmm0 = (y > x) ? -x / y : y / x
andps xmm3, SIMD_SP_halfPI // xmm3 = (y > x) ? PI/2 : 0.0f

Instead of using the slow 'divps' instruction the 'rcpps' instruction can be used. This

instruction calculates the reciprocal of a number with 12 bits of precision. A Newton-

Rapson iteration can be used to improve the accuracy of the reciprocal [24].

rcpps xmm2, xmm1
mulps xmm1, xmm2
mulps xmm1, xmm2
addps xmm2, xmm2
subps xmm2, xmm1 // xmm2 = (y > x) ? 1 / y : 1 / x

mulps xmm0, xmm2 // xmm0 = (y > x) ? x / y : y / x

The following SSE code implements the complete arc tangent function with two positive

parameters. The parameters 'x' and 'y' are assumed to be stored in 'xmm0' and 'xmm1'

respectively. The result is stored in the register 'xmm2'.

ALIGN4_INIT1(float SIMD_SP_atan_c0, 0.0028662257f);
ALIGN4_INIT1(float SIMD_SP_atan_c1, -0.0161657367f);
ALIGN4_INIT1(float SIMD_SP_atan_c2, 0.0429096138f);
ALIGN4_INIT1(float SIMD_SP_atan_c3, -0.0752896400f);
ALIGN4_INIT1(float SIMD_SP_atan_c4, 0.1065626393f);
ALIGN4_INIT1(float SIMD_SP_atan_c5, -0.1420889944f);
ALIGN4_INIT1(float SIMD_SP_atan_c6, 0.1999355085f);
ALIGN4_INIT1(float SIMD_SP_atan_c7, -0.3333314528f);

movaps xmm3, xmm0
minps xmm0, xmm1 // xmm0 = (y > x) ? x : y
maxps xmm1, xmm3 // xmm1 = (y > x) ? y : x
cmpeqps xmm3, xmm0 // xmm3 = (y > x) ? 0xFFFFFFFF : 0x00000000
rcpps xmm2, xmm1
mulps xmm1, xmm2
mulps xmm1, xmm2
addps xmm2, xmm2
subps xmm2, xmm1 // xmm2 = (y > x) ? 1 / y : 1 / x
mulps xmm0, xmm2 // xmm0 = (y > x) ? x / y : y / x
movaps xmm1, xmm3
andps xmm1, SIMD_SP_signBit // xmm1 = (y > x) ? 0x80000000 : 0x00000000
xorps xmm0, xmm1 // xmm0 = (y > x) ? -x / y : y / x
andps xmm3, SIMD_SP_halfPI // xmm3 = (y > x) ? PI/2 : 0.0f
movaps xmm1, xmm0
mulps xmm1, xmm1
movaps xmm2, SIMD_SP_atan_c0
mulps xmm2, xmm1
addps xmm2, SIMD_SP_atan_c1
mulps xmm2, xmm1
addps xmm2, SIMD_SP_atan_c2
mulps xmm2, xmm1
addps xmm2, SIMD_SP_atan_c3
mulps xmm2, xmm1
addps xmm2, SIMD_SP_atan_c4
mulps xmm2, xmm1
addps xmm2, SIMD_SP_atan_c5
mulps xmm2, xmm1
addps xmm2, SIMD_SP_atan_c6
mulps xmm2, xmm1
addps xmm2, SIMD_SP_atan_c7
mulps xmm2, xmm1
addps xmm2, SIMD_SP_one
mulps xmm2, xmm0
addps xmm2, xmm3

The complete routine to interpolate between two lists with joints is l isted in appendix A.

The code in appendix A assumes the lists with joints are 16-byte aligned. Because each

joint is 32 bytes in size it is better on a Pentium 4 to make the lists 32 or 64-byte

aligned to assure the least number of cache lines are used per iteration.

For comparison an SSE optimized version of linear interpolation with renormalization

has been implemented as well. The code for this routine is l isted in appendix B.

7. Results
The various routines for interpolation between joints have been tested on an Intel®

Pentium® 4 Processor on 130nm Technology and an Intel® Pentium® 4 Processor on

90nm Technology. The routines interpolated joints from two lists with 1024 joints each.

The total number of clock cycles and the number of clock cycles per joint for each

routine on the different CPUs are listed in the following table. Keep in mind that the

routines do not just interpolate quaternions but interpolate between joints which

involves both a quaternion for the orientation and a 4D vector for the position.

Hot Cache Clock Cycle Counts

Routine
P4 130nm total clock

cycles
P4 130nm clock

cycles per element
P4 90nm total

clock cycles
P4 90nm clock cycles

per element

SlerpJoints (C) 1035248 1011 1041893 1018

SlerpJoints (SSE) 109112 107 131517 128

LerpJoints (C) 218996 213 253350 248

LerpJoints (SSE) 51080 50 52848 52

The maximum absolute error of the SSE optimized Slerp compared to the original Slerp

is 4.768 x 10-7. The performance of the optimized Slerp can easily be improved by using

lower degree polynomials. However, this would obviously also decrease the accuracy

and the routine implemented here favors high accuracy over the additional speed

improvement.

8. Conclusion
When optimizing code the fastest algorithm that suits the needs of the application

should be chosen first. For some applications linear interpolation with renormalization

may be the perfect trade between speed and interpolation properties. Once the right

algorithm has been chosen this algorithm should first be optimized on an algorithmic

and mathematical level. Only the final step in the optimization process involves

exploiting the instruction set of an SIMD capable architecture.

One might argue that the optimized spherical l inear interpolation presented here is only

faster at the cost of loosing accuracy since it uses various approximations. However,

the use of floating point numbers means that most calculations loose precision one way

or the other. The optimized Slerp presented here is significantly faster at a minimal loss

of accuracy. Redundant and duplicate calculations are avoided and the Intel SSE

instructions are used to get the most out of every clock cycle.

This article shows that spherical l inear interpolation (Slerp) does not have to be

significantly slower than linear interpolation with renormalization (Lerp), especially

when the Intel SSE instruction set is used to exploit parallelism. Interestingly the SSE

optimized Slerp is two times faster than the C code for the Lerp. In the end the SSE

optimized Lerp uses the least number of clock cycles and may stil l be preferred when a

non-constant velocity during the interpolation is not an issue. However, the SSE

optimized Slerp is well over 7 times faster than the commonly used implementation in C

and makes the interpolation significantly faster when a constant angular velocity is

required.

9. References

1. On quaternions; or on a new system of imaginaries in algebra.

Sir William Rowan Hamilton

Philosophical Magazine xxv, pp. 10-13, July 1844

The Collected Mathematical Papers, Vol. 3, pp. 355-362, Cambridge

University Press, 1967

2. On certain results relating to quaternions.

Arthur Cayley

Philosophical Magazine xxvi, pp. 141-145, February 1845

The collected mathematical papers of Arthur Cayley, Vol. 1, pp. 123-126,

Cambridge University Press, 1889

Available Online: http://name.umdl.umich.edu/ABS3153

3. Complexity of Quaternion Multiplication

Thomas D. Howell, Jean-Claude Lafon

Department of Computer Science, Cornell University, Ithaca, N.Y., TR-75-

245, June 1975

4. Application of Quaternions

Gernot Hoffmann

January 20, 2002

Original report "Anleiting zum praktischen Gebrauch von Quaternionen",

February 1978

Available Online: http://www.fho-emden.de/~hoffmann

5. Application of Quaternions to Computation with Rotations

Eugene Slamin

Working Paper, Stanford AI Lab, 1979

6. Animating rotation with quaternion curves.

Ken Shoemake

Computer Graphics 19(3):245-254, 1985

Available Online: http://portal.acm.org/citation.cfm?doid=325334.325242

7. Quaternion calculus and fast animation.

Ken Shoemake

SIGGRAPH Course Notes, 10:101-121, 1987

8. Quaternions

Ken Shoemake

Department of Computer and Information Science, University of

Pennsylvania, Philadelphia, 1994

Available Online: ftp://ftp.cis.upenn.edu/pub/graphics/shoemake/

http://name.umdl.umich.edu/ABS3153
http://www.fho-emden.de/%7Ehoffmann
http://portal.acm.org/citation.cfm?doid=325334.325242
ftp://ftp.cis.upenn.edu/pub/graphics/shoemake/

9. Quaternion Calculus for Modeling Rotations in 3D Space

Hartmut Liefke

Department of Computer and Information Science, University of

Pennsylvania, April 1998

10. Quaternions, Interpolation and Animation

Erik B. Dam, Martin Koch, Martin Lillholm

Department of Computer Science, University of Copenhagen, Denmark, July

1998

Technical Report DIKU-TR-98/5

11. Practical parameterization of rotations using the exponential map

F. Sebastian Grassia

Journal of Graphics Tools, volume 3.3, 1998

12. Quaternion Algebra and Calculus

David Eberly

Magic Software, 2001

Available Online: http://www.magic-software.com

13. Rotation Representations and Performance Issues

David Eberly

Magic Software, 2002

Available Online: http://www.magic-software.com

14. A Linear Algebraic Approach to Quaternions

David Eberly

Magic Software, September 16, 2002

Available Online: http://www.magic-software.com

15. Incremental Spherical Linear Interpolation

Tony Barrera, Anders Hast and Ewert Bengtsson

SIGRAD 2004. The Annual SIGRAD Conference. Special Theme -

Environmental Visualization. November 24-25, 2004, Gävle, Sweden

Linköping Electronic Conference Proceedings, ISSN 1650-3686 (print),

1650-3740 (www)

Available Online: http://www.ep.liu.se/ecp/013/004/

16. Computing the Inverse Square Root

Ken Turkowski

Graphics Gems V

Morgan Kaufmann Publishers, 1st edition, January 15 1995

ISBN: 0125434553

http://www.magic-software.com/
http://www.magic-software.com/
http://www.magic-software.com/
http://www.ep.liu.se/ecp/013/004/

17. Fast Inverse Square Root

David Eberly

Magic Software, Inc. January 26, 2002

Available Online: http://www.magic-software.com

18. Fast Inverse Square Root

Chris Lomont

Department of Mathematics, Purdue University, Indiana, February 2003

Available Online: http://www.math.purdue.edu/~clomont

19. Rational approximations of functions

Bengt Carlson, M Goldstein

Los Alamos Scientific Laboratory of the University of California, 1955

20. Software Manual for the Elementary Functions

Jr. Cody, J. Will iam, William Waite

Prentice Hall, 1980

21.

Polynomial Approximations to Trigonometric Functions

Eddie Edwards

Game Programming Gems, 2000

Available Online: http://www.GameProgrammingGems.com

22. More Approximations to Trigonometric Functions

Robin Green

Game Programming Gems 3, 2002

Available Online: http://www.GameProgrammingGems.com

23. High-Speed Function Approximation Using a Minimax Quadratic Interpolator

Jose-Alenjandro Pineiro, Suart F. Oberman, Jean-Michel Muller, Javer D.

Bruguera

IEE Transactions on Computers, vol 54, no. 3, March 2005

Available Online: http://perso.ens-lyon.fr/jean-

michel.muller/QuadraticIEEETC0305.pdf

24. Increasing the Accuracy of the Results from the Reciprocal and Reciprocal

Square Root Instructions using the Newton-Raphson Method

Intel

Application Note 803, order nr. 243637-002 version 2.1, January 1999

Available Online: http://www.intel.com/cd/ids/developer/asmo-

na/eng/microprocessors/ia32/pentium4/resources/appnotes/19061.htm

25. Better 3D: The Writing Is on the Wal

http://www.magic-software.com/
http://www.math.purdue.edu/%7Eclomont
http://www.gameprogramminggems.com/
http://www.gameprogramminggems.com/
http://perso.ens-lyon.fr/jean-michel.muller/QuadraticIEEETC0305.pdf
http://perso.ens-lyon.fr/jean-michel.muller/QuadraticIEEETC0305.pdf
http://www.intel.com/cd/ids/developer/asmo-na/eng/microprocessors/ia32/pentium4/resources/appnotes/19061.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/microprocessors/ia32/pentium4/resources/appnotes/19061.htm

Jeff Lander

Game Developer Magazine, March 1998

Available Online: http://www.darwin3d.com/gdm1998.htm#gdm0398

26. Slashing Through Real-Time Character Animation

Jeff Lander

Game Developer Magazine, April 1998

Available Online: http://www.darwin3d.com/gdm1998.htm#gdm0498

27. Hacking Quaternions

Jonathan Blow

The Inner Product, Game Developer Magazine, March 2002

Available Online: http://number-

none.com/product/Hacking%20Quaternions/index.html

28. PolySlerp: a fast and accurate polynomial approximation of spherical l inear

interpolation (Slerp).

Thomas Busser

Game Developer Magazine, February 2004

Available Online:

http://www.highbeam.com/library/doc0.asp?DOCID=1G1:113526291&num

=5

29. Understanding Slerp, Then Not Using It

Jonathan Blow

The Inner Product, Game Developer Magazine, April 2004

Available Online: http://number-

none.com/product/Understanding%20Slerp,%20Then%20Not%20Using%20I

t/index.html

30. Faster Quaternion Interpolation Using Approximations

Andy Thomason

Game Programming Gems 5, 2005

Available Online: http://www.GameProgrammingGems.com

Appendix A
/*
 SSE Optimized Spherical Linear Interpolation between Quaternions
 Copyright (C) 2005 Id Software, Inc.
 Written by J.M.P. van Waveren

 This code is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This code is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of

http://www.darwin3d.com/gdm1998.htm#gdm0398
http://www.darwin3d.com/gdm1998.htm#gdm0498
http://number-none.com/product/Hacking%20Quaternions/index.html
http://number-none.com/product/Hacking%20Quaternions/index.html
http://www.highbeam.com/library/doc0.asp?DOCID=1G1:113526291&num=5
http://www.highbeam.com/library/doc0.asp?DOCID=1G1:113526291&num=5
http://number-none.com/product/Understanding%20Slerp,%20Then%20Not%20Using%20It/index.html
http://number-none.com/product/Understanding%20Slerp,%20Then%20Not%20Using%20It/index.html
http://number-none.com/product/Understanding%20Slerp,%20Then%20Not%20Using%20It/index.html
http://www.gameprogramminggems.com/

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.
*/

#define assert_16_byte_aligned(pointer) assert((((UINT_PTR)(pointer))&15) == 0);
#define ALIGN16(x) __declspec(align(16)) x
#define ALIGN4_INIT1(X, I) ALIGN16(static X[4] = { I, I, I, I })
#define R_SHUFFLE_PS(x, y, z, w) (((w) & 3) << 6 | ((z) & 3) << 4 | ((y) & 3) << 2 | ((x) & 3
))

#define IEEE_SP_ZERO 0
#define IEEE_SP_SIGN ((unsigned long) (1 << 31))

ALIGN4_INIT1(unsigned long SIMD_SP_signBit, IEEE_SP_SIGN);

ALIGN4_INIT1(float SIMD_SP_one, 1.0f);
ALIGN4_INIT1(float SIMD_SP_halfPI, M_PI/2);

ALIGN4_INIT1(float SIMD_SP_rsqrt_c0, 3.0f);
ALIGN4_INIT1(float SIMD_SP_rsqrt_c1, -0.5f);

ALIGN4_INIT1(float SIMD_SP_sin_c0, -2.39e-08f);
ALIGN4_INIT1(float SIMD_SP_sin_c1, 2.7526e-06f);
ALIGN4_INIT1(float SIMD_SP_sin_c2, -1.98409e-04f);
ALIGN4_INIT1(float SIMD_SP_sin_c3, 8.3333315e-03f);
ALIGN4_INIT1(float SIMD_SP_sin_c4, -1.666666664e-01f);

ALIGN4_INIT1(float SIMD_SP_atan_c0, 0.0028662257f);
ALIGN4_INIT1(float SIMD_SP_atan_c1, -0.0161657367f);
ALIGN4_INIT1(float SIMD_SP_atan_c2, 0.0429096138f);
ALIGN4_INIT1(float SIMD_SP_atan_c3, -0.0752896400f);
ALIGN4_INIT1(float SIMD_SP_atan_c4, 0.1065626393f);
ALIGN4_INIT1(float SIMD_SP_atan_c5, -0.1420889944f);
ALIGN4_INIT1(float SIMD_SP_atan_c6, 0.1999355085f);
ALIGN4_INIT1(float SIMD_SP_atan_c7, -0.3333314528f);

#define TRANSPOSE_4x4(reg0, reg1, reg2, reg3, reg4) \
 __asm movaps reg4, reg2 /* reg4 = 8, 9, 10, 11 */ \
 __asm unpcklps reg2, reg3 /* reg2 = 8, 12, 9, 13 */ \
 __asm unpckhps reg4, reg3 /* reg4 = 10, 14, 11, 15 */ \
 __asm movaps reg3, reg0 /* reg3 = 0, 1, 2, 3 */ \
 __asm unpcklps reg0, reg1 /* reg0 = 0, 4, 1, 5 */ \
 __asm unpckhps reg3, reg1 /* reg3 = 2, 6, 3, 7 */ \
 __asm movaps reg1, reg0 /* reg1 = 0, 4, 1, 5 */ \
 __asm shufps reg0, reg2, R_SHUFFLE_PS(0, 1, 0, 1) /* reg0 = 0, 4, 8, 12 */ \
 __asm shufps reg1, reg2, R_SHUFFLE_PS(2, 3, 2, 3) /* reg1 = 1, 5, 9, 13 */ \
 __asm movaps reg2, reg3 /* reg2 = 2, 6, 3, 7 */ \
 __asm shufps reg2, reg4, R_SHUFFLE_PS(0, 1, 0, 1) /* reg2 = 2, 6, 10, 14 */ \
 __asm shufps reg3, reg4, R_SHUFFLE_PS(2, 3, 2, 3) /* reg3 = 3, 7, 11, 15 */

struct Quaternion {
 float x, y, z, w;
};

struct Vec4 {
 float x, y, z, w;
};

struct JointQuat {
 Quaternion q;
 Vec4 t;
};

#define JOINTQUAT_SIZE (8*4)
#define JOINTQUAT_SIZE_SHIFT (5)
#define JOINTQUAT_Q_OFFSET (0*4)
#define JOINTQUAT_T_OFFSET (4*4)

void SlerpJoints(JointQuat *joints, const JointQuat *blendJoints, const float lerp, const int *index, const int
numJoints) {

 assert_16_byte_aligned(joints);
 assert_16_byte_aligned(blendJoints);
 assert_16_byte_aligned(JOINTQUAT_Q_OFFSET);
 assert_16_byte_aligned(JOINTQUAT_T_OFFSET);

 ALIGN16(float jointQuat0[4];)
 ALIGN16(float jointQuat1[4];)
 ALIGN16(float jointQuat2[4];)
 ALIGN16(float jointQuat3[4];)
 ALIGN16(float blendQuat0[4];)

 ALIGN16(float blendQuat1[4];)
 ALIGN16(float blendQuat2[4];)
 ALIGN16(float blendQuat3[4];)
 int a0, a1, a2, a3;

 __asm {
 movss xmm7, lerp
 cmpnless xmm7, SIMD_SP_zero
 movmskps ecx, xmm7
 test ecx, 1
 jz done1

 mov eax, numJoints
 shl eax, 2
 mov esi, joints
 mov edi, blendJoints
 mov edx, index

 add edx, eax
 neg eax
 jz done1

 movss xmm7, lerp
 cmpnltss xmm7, SIMD_SP_one
 movmskps ecx, xmm7
 test ecx, 1
 jz lerpJoints

 loopCopy:
 mov ecx, [edx+eax]
 shl ecx, JOINTQUAT_SIZE_SHIFT

 add eax, 1*4

 movaps xmm0, [edi+ecx+JOINTQUAT_Q_OFFSET]
 movaps xmm1, [edi+ecx+JOINTQUAT_T_OFFSET]
 movaps [esi+ecx+JOINTQUAT_Q_OFFSET], xmm0
 movaps [esi+ecx+JOINTQUAT_T_OFFSET], xmm1

 jl loopCopy

 jmp done1

 lerpJoints:
 add eax, 4*4
 jge done4

 loopJoint4:
 movss xmm3, lerp
 shufps xmm3, xmm3, R_SHUFFLE_PS(0, 0, 0, 0)

 mov ecx, [edx+eax-4*4]
 shl ecx, JOINTQUAT_SIZE_SHIFT
 mov a0, ecx

 // lerp first translations
 movaps xmm7, [edi+ecx+JOINTQUAT_T_OFFSET]
 subps xmm7, [esi+ecx+JOINTQUAT_T_OFFSET]
 mulps xmm7, xmm3
 addps xmm7, [esi+ecx+JOINTQUAT_T_OFFSET]
 movaps [esi+ecx+JOINTQUAT_T_OFFSET], xmm7

 // load first quaternions
 movaps xmm0, [esi+ecx+JOINTQUAT_Q_OFFSET]
 movaps xmm4, [edi+ecx+JOINTQUAT_Q_OFFSET]

 mov ecx, [edx+eax-3*4]
 shl ecx, JOINTQUAT_SIZE_SHIFT
 mov a1, ecx

 // lerp second translations
 movaps xmm7, [edi+ecx+JOINTQUAT_T_OFFSET]
 subps xmm7, [esi+ecx+JOINTQUAT_T_OFFSET]
 mulps xmm7, xmm3
 addps xmm7, [esi+ecx+JOINTQUAT_T_OFFSET]
 movaps [esi+ecx+JOINTQUAT_T_OFFSET], xmm7

 // load second quaternions
 movaps xmm1, [esi+ecx+JOINTQUAT_Q_OFFSET]
 movaps xmm5, [edi+ecx+JOINTQUAT_Q_OFFSET]

 mov ecx, [edx+eax-2*4]
 shl ecx, JOINTQUAT_SIZE_SHIFT
 mov a2, ecx

 // lerp third translations
 movaps xmm7, [edi+ecx+JOINTQUAT_T_OFFSET]
 subps xmm7, [esi+ecx+JOINTQUAT_T_OFFSET]
 mulps xmm7, xmm3
 addps xmm7, [esi+ecx+JOINTQUAT_T_OFFSET]
 movaps [esi+ecx+JOINTQUAT_T_OFFSET], xmm7

 // load third quaternions
 movaps xmm2, [esi+ecx+JOINTQUAT_Q_OFFSET]
 movaps xmm6, [edi+ecx+JOINTQUAT_Q_OFFSET]

 mov ecx, [edx+eax-1*4]
 shl ecx, JOINTQUAT_SIZE_SHIFT
 mov a3, ecx

 // lerp fourth translations
 movaps xmm7, [edi+ecx+JOINTQUAT_T_OFFSET]
 subps xmm7, [esi+ecx+JOINTQUAT_T_OFFSET]
 mulps xmm7, xmm3
 addps xmm7, [esi+ecx+JOINTQUAT_T_OFFSET]
 movaps [esi+ecx+JOINTQUAT_T_OFFSET], xmm7

 // load fourth quaternions
 movaps xmm3, [esi+ecx+JOINTQUAT_Q_OFFSET]

 TRANSPOSE_4x4(xmm0, xmm1, xmm2, xmm3, xmm7)

 movaps jointQuat0, xmm0
 movaps jointQuat1, xmm1
 movaps jointQuat2, xmm2
 movaps jointQuat3, xmm3

 movaps xmm7, [edi+ecx+JOINTQUAT_Q_OFFSET]

 TRANSPOSE_4x4(xmm4, xmm5, xmm6, xmm7, xmm3)

 movaps blendQuat0, xmm4
 movaps blendQuat1, xmm5
 movaps blendQuat2, xmm6
 movaps blendQuat3, xmm7

 // lerp quaternions
 mulps xmm0, xmm4
 mulps xmm1, xmm5
 addps xmm0, xmm1
 mulps xmm2, xmm6
 addps xmm0, xmm2
 movaps xmm3, jointQuat3
 mulps xmm3, blendQuat3
 addps xmm0, xmm3 // xmm0 = cosom

 movaps xmm1, xmm0
 movaps xmm2, xmm0
 andps xmm1, SIMD_SP_signBit // xmm1 = signBit
 xorps xmm0, xmm1
 mulps xmm2, xmm2

 xorps xmm4, xmm4
 movaps xmm3, SIMD_SP_one
 subps xmm3, xmm2 // xmm3 = scale0
 cmpeqps xmm4, xmm3
 andps xmm4, SIMD_SP_tiny // if values are zero replace them with a tiny number
 andps xmm3, SIMD_SP_absMask // make sure the values are positive
 orps xmm3, xmm4

 movaps xmm2, xmm3
 rsqrtps xmm4, xmm2
 mulps xmm2, xmm4
 mulps xmm2, xmm4
 subps xmm2, SIMD_SP_rsqrt_c0
 mulps xmm4, SIMD_SP_rsqrt_c1
 mulps xmm2, xmm4
 mulps xmm3, xmm2 // xmm3 = sqrt(scale0)

 // omega0 = atan2(xmm3, xmm0)
 movaps xmm4, xmm0
 minps xmm0, xmm3

 maxps xmm3, xmm4
 cmpeqps xmm4, xmm0
 rcpps xmm5, xmm3
 mulps xmm3, xmm5
 mulps xmm3, xmm5
 addps xmm5, xmm5
 subps xmm5, xmm3 // xmm5 = 1 / y or 1 / x
 mulps xmm0, xmm5 // xmm0 = x / y or y / x
 movaps xmm3, xmm4
 andps xmm3, SIMD_SP_signBit
 xorps xmm0, xmm3 // xmm0 = -x / y or y / x
 andps xmm4, SIMD_SP_halfPI // xmm4 = HALF_PI or 0.0f
 movaps xmm3, xmm0
 mulps xmm3, xmm3 // xmm3 = s
 movaps xmm5, SIMD_SP_atan_c0
 mulps xmm5, xmm3
 addps xmm5, SIMD_SP_atan_c1
 mulps xmm5, xmm3
 addps xmm5, SIMD_SP_atan_c2
 mulps xmm5, xmm3
 addps xmm5, SIMD_SP_atan_c3
 mulps xmm5, xmm3
 addps xmm5, SIMD_SP_atan_c4
 mulps xmm5, xmm3
 addps xmm5, SIMD_SP_atan_c5
 mulps xmm5, xmm3
 addps xmm5, SIMD_SP_atan_c6
 mulps xmm5, xmm3
 addps xmm5, SIMD_SP_atan_c7
 mulps xmm5, xmm3
 addps xmm5, SIMD_SP_one
 mulps xmm5, xmm0
 addps xmm5, xmm4 // xmm5 = omega0

 movss xmm6, lerp // xmm6 = lerp
 shufps xmm6, xmm6, R_SHUFFLE_PS(0, 0, 0, 0)
 mulps xmm6, xmm5 // xmm6 = omega1
 subps xmm5, xmm6 // xmm5 = omega0

 // scale0 = sin(xmm5) * xmm2
 // scale1 = sin(xmm6) * xmm2
 movaps xmm3, xmm5
 movaps xmm7, xmm6
 mulps xmm3, xmm3
 mulps xmm7, xmm7
 movaps xmm4, SIMD_SP_sin_c0
 movaps xmm0, SIMD_SP_sin_c0
 mulps xmm4, xmm3
 mulps xmm0, xmm7
 addps xmm4, SIMD_SP_sin_c1
 addps xmm0, SIMD_SP_sin_c1
 mulps xmm4, xmm3
 mulps xmm0, xmm7
 addps xmm4, SIMD_SP_sin_c2
 addps xmm0, SIMD_SP_sin_c2
 mulps xmm4, xmm3
 mulps xmm0, xmm7
 addps xmm4, SIMD_SP_sin_c3
 addps xmm0, SIMD_SP_sin_c3
 mulps xmm4, xmm3
 mulps xmm0, xmm7
 addps xmm4, SIMD_SP_sin_c4
 addps xmm0, SIMD_SP_sin_c4
 mulps xmm4, xmm3
 mulps xmm0, xmm7
 addps xmm4, SIMD_SP_one
 addps xmm0, SIMD_SP_one
 mulps xmm5, xmm4
 mulps xmm6, xmm0
 mulps xmm5, xmm2 // xmm5 = scale0
 mulps xmm6, xmm2 // xmm6 = scale1

 xorps xmm6, xmm1

 movaps xmm0, jointQuat0
 mulps xmm0, xmm5
 movaps xmm1, blendQuat0
 mulps xmm1, xmm6
 addps xmm0, xmm1

 movaps xmm1, jointQuat1

 mulps xmm1, xmm5
 movaps xmm2, blendQuat1
 mulps xmm2, xmm6
 addps xmm1, xmm2

 movaps xmm2, jointQuat2
 mulps xmm2, xmm5
 movaps xmm3, blendQuat2
 mulps xmm3, xmm6
 addps xmm2, xmm3

 movaps xmm3, jointQuat3
 mulps xmm3, xmm5
 movaps xmm4, blendQuat3
 mulps xmm4, xmm6
 addps xmm3, xmm4

 add eax, 4*4

 // transpose xmm0, xmm1, xmm2, xmm3 to memory
 movaps xmm7, xmm0
 movaps xmm6, xmm2

 unpcklps xmm0, xmm1
 unpcklps xmm2, xmm3

 mov ecx, a0
 movlps [esi+ecx+JOINTQUAT_Q_OFFSET+0], xmm0
 movlps [esi+ecx+JOINTQUAT_Q_OFFSET+8], xmm2

 mov ecx, a1
 movhps [esi+ecx+JOINTQUAT_Q_OFFSET+0], xmm0
 movhps [esi+ecx+JOINTQUAT_Q_OFFSET+8], xmm2

 unpckhps xmm7, xmm1
 unpckhps xmm6, xmm3

 mov ecx, a2
 movlps [esi+ecx+JOINTQUAT_Q_OFFSET+0], xmm7
 movlps [esi+ecx+JOINTQUAT_Q_OFFSET+8], xmm6

 mov ecx, a3
 movhps [esi+ecx+JOINTQUAT_Q_OFFSET+0], xmm7
 movhps [esi+ecx+JOINTQUAT_Q_OFFSET+8], xmm6

 jle loopJoint4

 done4:
 sub eax, 4*4
 jz done1

 loopJoint1:
 movss xmm3, lerp
 shufps xmm3, xmm3, R_SHUFFLE_PS(0, 0, 0, 0)

 mov ecx, [edx+eax]
 shl ecx, JOINTQUAT_SIZE_SHIFT

 // lerp first translations
 movaps xmm7, [edi+ecx+JOINTQUAT_T_OFFSET]
 subps xmm7, [esi+ecx+JOINTQUAT_T_OFFSET]
 mulps xmm7, xmm3
 addps xmm7, [esi+ecx+JOINTQUAT_T_OFFSET]
 movaps [esi+ecx+JOINTQUAT_T_OFFSET], xmm7

 // load first quaternions
 movaps xmm0, [esi+ecx+JOINTQUAT_Q_OFFSET]
 movaps xmm1, [edi+ecx+JOINTQUAT_Q_OFFSET]

 movaps jointQuat0, xmm0
 movaps blendQuat0, xmm1

 // lerp quaternions
 mulps xmm1, xmm0
 movhlps xmm0, xmm1
 addps xmm1, xmm0
 movaps xmm0, xmm1
 shufps xmm0, xmm0, R_SHUFFLE_PS(1, 0, 2, 3)
 addss xmm0, xmm1 // xmm0 = cosom

 movss xmm1, xmm0

 movss xmm2, xmm0
 andps xmm1, SIMD_SP_signBit // xmm1 = signBit
 xorps xmm0, xmm1
 mulss xmm2, xmm2

 xorps xmm4, xmm4
 movss xmm3, SIMD_SP_one
 subss xmm3, xmm2 // xmm3 = scale0
 cmpeqss xmm4, xmm3
 andps xmm4, SIMD_SP_tiny // if values are zero replace them with a tiny number
 andps xmm3, SIMD_SP_absMask // make sure the values are positive
 orps xmm3, xmm4

 movss xmm2, xmm3
 rsqrtss xmm4, xmm2
 mulss xmm2, xmm4
 mulss xmm2, xmm4
 subss xmm2, SIMD_SP_rsqrt_c0
 mulss xmm4, SIMD_SP_rsqrt_c1
 mulss xmm2, xmm4
 mulss xmm3, xmm2 // xmm3 = sqrt(scale0)

 // omega0 = atan2(xmm3, xmm0)
 movss xmm4, xmm0
 minss xmm0, xmm3
 maxss xmm3, xmm4
 cmpeqss xmm4, xmm0
 rcpss xmm5, xmm3
 mulss xmm3, xmm5
 mulss xmm3, xmm5
 addss xmm5, xmm5
 subss xmm5, xmm3 // xmm5 = 1 / y or 1 / x
 mulss xmm0, xmm5 // xmm0 = x / y or y / x
 movss xmm3, xmm4
 andps xmm3, SIMD_SP_signBit
 xorps xmm0, xmm3 // xmm0 = -x / y or y / x
 andps xmm4, SIMD_SP_halfPI // xmm4 = HALF_PI or 0.0f
 movss xmm3, xmm0
 mulss xmm3, xmm3 // xmm3 = s
 movss xmm5, SIMD_SP_atan_c0
 mulss xmm5, xmm3
 addss xmm5, SIMD_SP_atan_c1
 mulss xmm5, xmm3
 addss xmm5, SIMD_SP_atan_c2
 mulss xmm5, xmm3
 addss xmm5, SIMD_SP_atan_c3
 mulss xmm5, xmm3
 addss xmm5, SIMD_SP_atan_c4
 mulss xmm5, xmm3
 addss xmm5, SIMD_SP_atan_c5
 mulss xmm5, xmm3
 addss xmm5, SIMD_SP_atan_c6
 mulss xmm5, xmm3
 addss xmm5, SIMD_SP_atan_c7
 mulss xmm5, xmm3
 addss xmm5, SIMD_SP_one
 mulss xmm5, xmm0
 addss xmm5, xmm4 // xmm5 = omega0

 movss xmm6, lerp // xmm6 = lerp
 mulss xmm6, xmm5 // xmm6 = omega1
 subss xmm5, xmm6 // xmm5 = omega0

 // scale0 = sin(xmm5) * xmm2
 // scale1 = sin(xmm6) * xmm2
 movss xmm3, xmm5
 movss xmm7, xmm6
 mulss xmm3, xmm3
 mulss xmm7, xmm7
 movss xmm4, SIMD_SP_sin_c0
 movss xmm0, SIMD_SP_sin_c0
 mulss xmm4, xmm3
 mulss xmm0, xmm7
 addss xmm4, SIMD_SP_sin_c1
 addss xmm0, SIMD_SP_sin_c1
 mulss xmm4, xmm3
 mulss xmm0, xmm7
 addss xmm4, SIMD_SP_sin_c2
 addss xmm0, SIMD_SP_sin_c2
 mulss xmm4, xmm3
 mulss xmm0, xmm7

 addss xmm4, SIMD_SP_sin_c3
 addss xmm0, SIMD_SP_sin_c3
 mulss xmm4, xmm3
 mulss xmm0, xmm7
 addss xmm4, SIMD_SP_sin_c4
 addss xmm0, SIMD_SP_sin_c4
 mulss xmm4, xmm3
 mulss xmm0, xmm7
 addss xmm4, SIMD_SP_one
 addss xmm0, SIMD_SP_one
 mulss xmm5, xmm4
 mulss xmm6, xmm0
 mulss xmm5, xmm2 // xmm5 = scale0
 mulss xmm6, xmm2 // xmm6 = scale1

 xorps xmm6, xmm1

 shufps xmm5, xmm5, R_SHUFFLE_PS(0, 0, 0, 0)
 mulps xmm5, jointQuat0
 shufps xmm6, xmm6, R_SHUFFLE_PS(0, 0, 0, 0)
 mulps xmm6, blendQuat0
 addps xmm5, xmm6

 movaps [esi+ecx+JOINTQUAT_Q_OFFSET], xmm5

 add eax, 1*4
 jl loopJoint1

 done1:
 }
}

Appendix B
/*
 SSE Optimized Linear Interpolation between Quaternions
 Copyright (C) 2005 Id Software, Inc.
 Written by J.M.P. van Waveren

 This code is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This code is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.
*/

void LerpJoints(JointQuat *joints, const JointQuat *blendJoints, const float lerp, const int *index, const int
numJoints) {

 assert_16_byte_aligned(joints);
 assert_16_byte_aligned(blendJoints);
 assert_16_byte_aligned(JOINTQUAT_Q_OFFSET);
 assert_16_byte_aligned(JOINTQUAT_T_OFFSET);

 ALIGN16(float jointQuat3[4];)
 ALIGN16(float blendQuat3[4];)
 ALIGN16(float scaledLerp;)
 int a0, a1, a2, a3;

 __asm {
 movss xmm7, lerp
 cmpnless xmm7, SIMD_SP_zero
 movmskps ecx, xmm7
 test ecx, 1
 jz done1

 mov eax, numJoints
 shl eax, 2
 mov esi, joints
 mov edi, blendJoints
 mov edx, index

 add edx, eax

 neg eax
 jz done1

 movss xmm7, lerp
 cmpnltss xmm7, SIMD_SP_one
 movmskps ecx, xmm7
 test ecx, 1
 jz lerpJoints

 loopCopy:
 mov ecx, [edx+eax]
 shl ecx, JOINTQUAT_SIZE_SHIFT

 add eax, 1*4

 movaps xmm0, [edi+ecx+JOINTQUAT_Q_OFFSET]
 movaps xmm1, [edi+ecx+JOINTQUAT_T_OFFSET]
 movaps [esi+ecx+JOINTQUAT_Q_OFFSET], xmm0
 movaps [esi+ecx+JOINTQUAT_T_OFFSET], xmm1

 jl loopCopy

 jmp done1

 lerpJoints:
 movss xmm7, lerp
 movss xmm6, SIMD_SP_one
 subss xmm6, xmm7
 divss xmm7, xmm6
 movss scaledLerp, xmm7

 add eax, 4*4
 jge done4

 loopJoint4:
 movss xmm3, lerp
 shufps xmm3, xmm3, R_SHUFFLE_PS(0, 0, 0, 0)

 mov ecx, [edx+eax-4*4]
 shl ecx, JOINTQUAT_SIZE_SHIFT
 mov a0, ecx

 // lerp first translations
 movaps xmm7, [edi+ecx+JOINTQUAT_T_OFFSET]
 subps xmm7, [esi+ecx+JOINTQUAT_T_OFFSET]
 mulps xmm7, xmm3
 addps xmm7, [esi+ecx+JOINTQUAT_T_OFFSET]
 movaps [esi+ecx+JOINTQUAT_T_OFFSET], xmm7

 // load first quaternions
 movaps xmm0, [esi+ecx+JOINTQUAT_Q_OFFSET]
 movaps xmm4, [edi+ecx+JOINTQUAT_Q_OFFSET]

 mov ecx, [edx+eax-3*4]
 shl ecx, JOINTQUAT_SIZE_SHIFT
 mov a1, ecx

 // lerp second translations
 movaps xmm7, [edi+ecx+JOINTQUAT_T_OFFSET]
 subps xmm7, [esi+ecx+JOINTQUAT_T_OFFSET]
 mulps xmm7, xmm3
 addps xmm7, [esi+ecx+JOINTQUAT_T_OFFSET]
 movaps [esi+ecx+JOINTQUAT_T_OFFSET], xmm7

 // load second quaternions
 movaps xmm1, [esi+ecx+JOINTQUAT_Q_OFFSET]
 movaps xmm5, [edi+ecx+JOINTQUAT_Q_OFFSET]

 mov ecx, [edx+eax-2*4]
 shl ecx, JOINTQUAT_SIZE_SHIFT
 mov a2, ecx

 // lerp third translations
 movaps xmm7, [edi+ecx+JOINTQUAT_T_OFFSET]
 subps xmm7, [esi+ecx+JOINTQUAT_T_OFFSET]
 mulps xmm7, xmm3
 addps xmm7, [esi+ecx+JOINTQUAT_T_OFFSET]
 movaps [esi+ecx+JOINTQUAT_T_OFFSET], xmm7

 // load third quaternions
 movaps xmm2, [esi+ecx+JOINTQUAT_Q_OFFSET]

 movaps xmm6, [edi+ecx+JOINTQUAT_Q_OFFSET]

 mov ecx, [edx+eax-1*4]
 shl ecx, JOINTQUAT_SIZE_SHIFT
 mov a3, ecx

 // lerp fourth translations
 movaps xmm7, [edi+ecx+JOINTQUAT_T_OFFSET]
 subps xmm7, [esi+ecx+JOINTQUAT_T_OFFSET]
 mulps xmm7, xmm3
 addps xmm7, [esi+ecx+JOINTQUAT_T_OFFSET]
 movaps [esi+ecx+JOINTQUAT_T_OFFSET], xmm7

 // load fourth quaternions
 movaps xmm3, [esi+ecx+JOINTQUAT_Q_OFFSET]

 TRANSPOSE_4x4(xmm0, xmm1, xmm2, xmm3, xmm7)

 movaps jointQuat3, xmm3

 movaps xmm7, [edi+ecx+JOINTQUAT_Q_OFFSET]

 TRANSPOSE_4x4(xmm4, xmm5, xmm6, xmm7, xmm3)

 movaps blendQuat3, xmm7

 // lerp quaternions
 movaps xmm3, xmm0
 mulps xmm3, xmm4
 movaps xmm7, xmm1
 mulps xmm7, xmm5
 addps xmm3, xmm7
 movaps xmm7, xmm2
 mulps xmm7, xmm6
 addps xmm3, xmm7
 movaps xmm7, jointQuat3
 mulps xmm7, blendQuat3
 addps xmm3, xmm7 // xmm3 = cosom
 andps xmm3, SIMD_SP_signBit // xmm3 = signBit
 movss xmm7, scaledLerp
 shufps xmm7, xmm7, R_SHUFFLE_PS(0, 0, 0, 0)
 xorps xmm7, xmm3 // xmm7 = scaledLerp ^ signBit

 mulps xmm4, xmm7
 addps xmm4, xmm0
 movaps xmm0, xmm4
 mulps xmm0, xmm0

 mulps xmm5, xmm7
 addps xmm5, xmm1
 movaps xmm1, xmm5
 mulps xmm1, xmm1
 addps xmm0, xmm1

 mulps xmm6, xmm7
 addps xmm6, xmm2
 movaps xmm2, xmm6
 mulps xmm2, xmm2
 addps xmm0, xmm2

 mulps xmm7, blendQuat3
 addps xmm7, jointQuat3
 movaps xmm1, xmm7
 mulps xmm1, xmm1
 addps xmm0, xmm1

 rsqrtps xmm2, xmm0
 mulps xmm0, xmm2
 mulps xmm0, xmm2
 subps xmm0, SIMD_SP_rsqrt_c0
 mulps xmm2, SIMD_SP_rsqrt_c1
 mulps xmm0, xmm2

 mulps xmm4, xmm0
 mulps xmm5, xmm0
 mulps xmm6, xmm0
 mulps xmm7, xmm0

 add eax, 4*4

 // transpose xmm4, xmm5, xmm6, xmm7 to memory

 movaps xmm2, xmm4
 movaps xmm3, xmm6

 unpcklps xmm4, xmm5
 unpcklps xmm6, xmm7

 mov ecx, a0
 movlps [esi+ecx+JOINTQUAT_Q_OFFSET+0], xmm4
 movlps [esi+ecx+JOINTQUAT_Q_OFFSET+8], xmm6

 mov ecx, a1
 movhps [esi+ecx+JOINTQUAT_Q_OFFSET+0], xmm4
 movhps [esi+ecx+JOINTQUAT_Q_OFFSET+8], xmm6

 unpckhps xmm2, xmm5
 unpckhps xmm3, xmm7

 mov ecx, a2
 movlps [esi+ecx+JOINTQUAT_Q_OFFSET+0], xmm2
 movlps [esi+ecx+JOINTQUAT_Q_OFFSET+8], xmm3

 mov ecx, a3
 movhps [esi+ecx+JOINTQUAT_Q_OFFSET+0], xmm2
 movhps [esi+ecx+JOINTQUAT_Q_OFFSET+8], xmm3

 jle loopJoint4

 done4:
 sub eax, 4*4
 jz done1

 movss xmm6, lerp
 shufps xmm6, xmm6, R_SHUFFLE_PS(0, 0, 0, 0)
 movss xmm7, scaledLerp
 shufps xmm7, xmm7, R_SHUFFLE_PS(0, 0, 0, 0)

 loopJoint1:

 mov ecx, [edx+eax]
 shl ecx, JOINTQUAT_SIZE_SHIFT

 // lerp translations
 movaps xmm3, [edi+ecx+JOINTQUAT_T_OFFSET]
 subps xmm3, [esi+ecx+JOINTQUAT_T_OFFSET]
 mulps xmm3, xmm6
 addps xmm3, [esi+ecx+JOINTQUAT_T_OFFSET]
 movaps [esi+ecx+JOINTQUAT_T_OFFSET], xmm3

 // load quaternions
 movaps xmm0, [esi+ecx+JOINTQUAT_Q_OFFSET]
 movaps xmm1, [edi+ecx+JOINTQUAT_Q_OFFSET]

 // lerp quaternions
 movaps xmm2, xmm0
 mulps xmm2, xmm1
 movhlps xmm3, xmm2
 addps xmm2, xmm3
 movaps xmm3, xmm2
 shufps xmm3, xmm3, R_SHUFFLE_PS(1, 0, 2, 3)
 addss xmm3, xmm2 // xmm3 = cosom
 shufps xmm3, xmm3, R_SHUFFLE_PS(0, 0, 0, 0)
 andps xmm3, SIMD_SP_signBit // xmm3 = signBit
 xorps xmm3, xmm7 // xmm3 = scaledLerp ^ signBit

 mulps xmm1, xmm3
 addps xmm1, xmm0 // xmm1 = jointQuat + scale * blendQuat

 movaps xmm0, xmm1
 mulps xmm0, xmm0
 movhlps xmm2, xmm0
 addps xmm0, xmm2
 movaps xmm2, xmm0
 shufps xmm2, xmm2, R_SHUFFLE_PS(1, 0, 2, 3)
 addss xmm0, xmm2

 rsqrtss xmm2, xmm0
 mulss xmm0, xmm2
 mulss xmm0, xmm2
 subss xmm0, SIMD_SP_rsqrt_c0
 mulss xmm2, SIMD_SP_rsqrt_c1
 mulss xmm0, xmm2

 shufps xmm0, xmm0, R_SHUFFLE_PS(0, 0, 0, 0)
 mulps xmm1, xmm0
 movaps [esi+ecx+JOINTQUAT_Q_OFFSET], xmm1

 add eax, 1*4
 jl loopJoint1

 done1:

 }
}

	Abstract
	Introduction
	Previous Work
	Layout
	Quaternions
	Slerp

	Lerp
	Optimizing Slerp
	SSE Optimized Slerp
	Results
	Conclusion
	References
	Appendix A
	Appendix B
	Slerping Clock Cycles.pdf
	Abstract
	1. Introduction
	1.1 Previous Work
	1.2 Layout

	2. Quaternions
	3. Slerp
	4. Lerp
	5. Optimizing Slerp
	6. SSE Optimized Slerp
	7. Results
	8. Conclusion
	9. References
	Appendix A
	Appendix B

