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Abstract  
An optimized spherical l inear interpolation (Slerp) between two quaternions is 

presented. This optimized Slerp transforms the more commonly used trigonometric 

functions to mathematically equivalent functions that can be replaced with fast and 

accurate polynomial approximations. Furthermore the Intel Streaming SIMD Extensions 

are used to further improve the performance. The end result is a Slerp routine which is 

more than 7 times faster than the commonly used implementation in C. Furthermore the 

optimized Slerp is very accurate and actually two times faster than linear interpolation 

with renormalization (Lerp) in C.  

1. Introduction  
Quaternions can describe any rotation about any axis in 3D space and, unlike Euler 

angles, quaternions do not present issues like "gimbal lock". With Euler angles there 

are orientations in which there may not exist a simple change to the angles to represent 

a certain local rotation. Quaternions are small and efficient and are often a good 

replacement for rotation matrices. They take up less space, only 4 scalars as opposed 

to 9 for a 3x3 rotation matrix. Quaternion multiplication is also more efficient than 

matrix multiplication and a quaternion can be easily and quickly converted to a rotation 

matrix where necessary. These properties make quaternions ideal for many algorithms 

and systems like for instance an animation system. Such an animation system often 

uses interpolation between quaternions to generate rotations in between key frames. 

Different animations can also be blended together to achieve smooth transitions from 

one animation to another. As it turns out interpolation between two general rotations is 

not trivial and can be computationally expensive. However, quaternions are generally 

the best representation for interpolating orientations and there are several different 

approaches with different properties and different computational costs.  

1.1 Previous Work  

The quaternion was first introduced by Will iam Rowan Hamilton (1805 - 1865) as a 

successor to complex numbers [1]. Arthur Cayley (1821 - 1895) contributed further by 

describing rotations with quaternion multiplication [2]. Ken Shoemake popularized 

quaternions in the world of computer graphics to avoid common problems such as 

"gimbal lock" [6]. Quaternions have since found their way into many different systems 

among which animation, inverse kinematics and physics.  



Quaternions are often used for the interpolation between general rotations. Usually 

three properties are desired when interpolating rotations: minimal torque, constant 

velocity, commutativity. There are three general approaches to quaternion 

interpolation, and each of these approaches gives two of the three desirable properties. 

First there is the spherical l inear interpolation also known as Slerp which was 

popularized by Ken Shoemake [6]. Slerp has both constant velocity and minimal torque 

but is not commutative. Furthermore there is the linear interpolation with 

renormalization also known as Lerp which is also discussed by Ken Shoemake [6]. Lerp 

is commutative and has minimal torque but does not maintain a constant velocity. 

Finally there is the log-quaternion lerp, also known as exponential map interpolation as 

described by Grassia [11]. The exponential map interpolation is commutative and 

maintains a constant velocity but is not torque minimal.  

The spherical l inear interpolation (Slerp) of quaternions is often considered the optimal 

interpolation curve between two general rotations. The evaluation of the Slerp function 

involves several trigonometric functions and is computationally expensive. Several 

attempts to optimize the Slerp function with mixed results can be found in literature 

[27,28,29,30].  

1.2 Layout  

Section 2 shows some properties of quaternions. Section 3 describes spherical l inear 

interpolation between two quaternions. Linear interpolation with renormalization is 

presented in section 4. In section 5 spherical l inear interpolation between two 

quaternions is optimized. Section 6 goes into the details of implementing SIMD 

optimized code for spherical l inear interpolation. The results of the various 

optimizations are presented in section 7 and several conclusions are drawn in section 8.  

2. Quaternions  
The unit quaternion sphere is equivalent to the space of general rotations. Throughout 

this article quaternions will represent general rotations. The four components of a 

quaternion are denoted (x, y, z, w) and the quaternion will be represented in code as 

follows.  

struct Quaternion { 
    float x, y, z, w; 
}; 

A quaternion (x, y, z, w) which represents a general rotation can be interpreted 

geometrically as follows.  

x = X · sin( α / 2 ) 
y = Y · sin( α / 2 ) 
z = Z · sin( α / 2 ) 
w = cos( α / 2 ) 

Here (X, Y, Z) is the unit length axis of rotation in 3D space and α is the angle of 
rotation about the axis in radians. This interpretation shows that the quaternion (x, y, 
z, w) describes the same general rotation as the quaternion (-x, -y, -z, -w) because a 



rotation defined by an axis and an angle is equivalent to the rotation defined by the 
opposite axis and negated angle. From sin2( α ) + cos2( α ) = 1 and the fact that the 
axis of rotation is unit length follows that the following holds for quaternions that 
represent general rotations: x2 + y2 + z2 + w2 = 1, which describes the unit 
quaternion sphere.  

A quaternion is small and efficient and can easily be converted to a rotation matrix. 

Therefore quaternions are often used in skeletal animation systems to describe the 

orientation of joints. Such an animation system often uses key frames described by 

quaternions and positions and requires interpolation between key frames to display 

smooth motion.  

Quaternions can be used for the interpolation between general rotations by using four-

dimensional vector interpolation. Given two quaternions q0 and q1 and a parameter t in 

the range [0, 1] the general formula for the interpolation between q0 and q1 is given 

by:  

q(t) = f0(t) · q0 + f1(t) · q1  

where f0 and f1 are scalar functions such that f0(0) = 1, f0(1) = 0, f1(0) = 0 and f1(1) = 

1. The exact course of the functions f0 and f1 may vary based on the desired properties 

of the interpolation.  

3. Slerp  
The interpolation curve for spherical l inear interpolation forms the shortest great arc on 

the quaternion unit sphere. Slerp has constant angular velocity and is often considered 

the optimal interpolation curve between two general rotations.  

Given two quaternions q0 and q1 and a parameter t in the range [0,1] the spherical 

l inear interpolation is defined as follows:  

sin( ( 1 - t ) · α ) sin( t · α ) 
q(t) =   

sin( α )  
  · q0   +   

sin( α ) 
  · q1

Where α is the angle between q0 and q1 which can be calculated from the dot product of 
the two quaternions. 

cos( α ) = q0 · q1  

The following code implements the spherical l inear interpolation between two 

quaternions.  

void Slerp( const Quaternion &from, const Quaternion &to, float t, Quaternion &result ) { 
    float cosom, absCosom, sinom, omega, scale0, scale1; 
 
    cosom = from.x * to.x + from.y * to.y + from.z * to.z + from.w * to.w; 
    absCosom = fabs( cosom ); 
    if ( ( 1.0f - absCosom ) > 1e-6f ) { 
        omega = acos( absCosom ); 
        sinom = 1.0f / sin( omega ); 
        scale0 = sin( ( 1.0f - t ) * omega ) * sinom; 



        scale1 = sin( t * omega ) * sinom; 
    } else { 
        scale0 = 1.0f - t; 
        scale1 = t; 
    } 
    scale1 = ( cosom >= 0.0f ) ? scale1 : -scale1; 
    result.x = scale0 * from.x + scale1 * to.x; 
    result.y = scale0 * from.y + scale1 * to.y; 
    result.z = scale0 * from.z + scale1 * to.z; 
    result.w = scale0 * from.w + scale1 * to.w; 
} 

Although the above routine is fairly small, even in assembler code, the routine may 

consume a significant number of clock cycles on today's hardware. When used to 

interpolate between many quaternions, for instance in an animation system, this routine 

can easily cause performance problems.  

4. Lerp  
Spherical l inear interpolation between two quaternions can be approximated with a 

linear interpolation with renormalization (Lerp). The interpolation traces out the exact 

same curve as Slerp, but does not maintain a constant speed across the arc. The 

speedup in the middle is due to the fact that the interpolation curve takes a short cut 

below the surface of the unit sphere.  

The following code implements the Lerp. No trigonometric functions are used and the 

code is significantly faster than the Slerp code above.  

Lerp( const Quaternion &from, const Quaternion &to, float t, Quaternion &result ) { 
    float cosom, scale0, scale1, s; 
 
    cosom = from.x * to.x + from.y * to.y + from.z * to.z + from.w * to.w; 
 
    scale0 = 1.0f - t; 
    scale1 = ( cosom >= 0.0f ) ? t : -t; 
 
    result.x = scale0 * from.x + scale1 * to.x; 
    result.y = scale0 * from.y + scale1 * to.y; 
    result.z = scale0 * from.z + scale1 * to.z; 
    result.w = scale0 * from.w + scale1 * to.w; 
 
    s = 1.0f / sqrt( result.x * result.x + result.y * result.y + result.z * result.z + result.w * result.w );
 
    result.x *= s; 
    result.y *= s; 
    result.z *= s; 
    result.w *= s; 
} 

For many purposes the non-constant velocity is not or hardly noticeable. Especially for 

rotations over small angles the above routine may be a good alternative to the slower 

Slerp. However, other applications may require the velocity to be a constant function 

across the arc and spherical l inear interpolation may be the preferred method. 

Fortunately Slerp does not have to be slower than the above routine as shown in the 

next sections.  

5. Optimizing Slerp  
What exactly makes Slerp so slow? Slerp uses several trigonometric functions that are 

not particularly fast on today's hardware. The arc cosine is usually a math library 

function which evaluates a square root and an arc tangent function. On an Intel Pentium 



these translate to an 'fsqrt' and an 'fpatan' instruction respectively. Both instructions 

have high latency and stall the FPU for many clock cycles. Next Slerp calculates the 

reciprocal of the sine of the angle between the quaternions. On an Intel Pentium this 

calculation typically uses the 'fsin' instruction with a dependent 'fdiv' instruction. Both 

these instructions have high latency and throughput. Furthermore the quaternion scale 

factors are calculated with two more sine functions that also translate to expensive 

'fsin' instructions. All together this amounts to many clock cycles spent evaluating 

trigonometric functions.  

Fortunately the following fundamental identities can be used to transform the 

trigonometric functions into functions that can be evaluated much faster on today's 

hardware.  

sin2( α ) + cos2( α ) = 1  

sin( α )  
tan( α ) =    

cos( α ) 

The cosine of the angle between the two quaternions is known. Using the first identity 

shown above the sine can be trivially calculated from the cosine as follows.  

sin( α ) =   √  1 - cos2( α )  

Because the square of the cosine is used any sign information would be lost in the 

above calculation. However, Slerp uses the absolute value of the cosine so no special 

handling is required.  

Once both the sine and cosine of the angle are available there really is no need to use 

an expensive arc cosine function to calculate the actual angle between the quaternions. 

The second identity shown above can be used to calculate the angle from the sine and 

the cosine. The following code shows the new Slerp.  

void SlerpTransformed( const Quaternion &from, const Quaternion &to, float t, Quaternion &result ) { 
    float cosom, absCosom, sinom, sinSqr, omega, scale0, scale1; 
 
    cosom = from.x * to.x + from.y * to.y + from.z * to.z + from.w * to.w; 
    absCosom = fabs( cosom ); 
    if ( ( 1.0f - absCosom ) > 1e-6f ) { 
        sinSqr = 1.0f - absCosom * absCosom; 
        sinom = 1.0f / sqrt( sinSqr ); 
        omega = atan2( sinSqr * sinom, absCosom ); 
        scale0 = sin( ( 1.0f - t ) * omega ) * sinom; 
        scale1 = sin( t * omega ) * sinom; 
    } else { 
        scale0 = 1.0f - t; 
        scale1 = t; 
    } 
    scale1 = ( cosom >= 0.0f ) ? scale1 : -scale1; 
    result.x = scale0 * from.x + scale1 * to.x; 
    result.y = scale0 * from.y + scale1 * to.y; 
    result.z = scale0 * from.z + scale1 * to.z; 
    result.w = scale0 * from.w + scale1 * to.w; 
} 

Looking at the FPU assembler code for the above routine there are now one 'fsqrt' 

instruction, one 'fdiv' instruction, one 'fpatan' instruction and two 'fsin' instructions. In 

the original routine there are one 'fsqrt' instruction, one 'fdiv' instruction, one 'fpatan' 



instruction and three 'fsin' instructions. In other words the new routine has one 'fsin' 

instruction less than the original routine.  

The 1.0f / sqrt() can be replaced with a slightly faster approximation [16,17,18]. The 

following approximation does not use the expensive division and also avoids the 

expensive square root calculation.  

float ReciprocalSqrt( float x ) { 
    long i; 
    float y, r; 
 
    y = x * 0.5f; 
    i = *(long *)( &x ); 
    i = 0x5f3759df - ( i >> 1 ); 
    r = *(float *)( &i ); 
    r = r * ( 1.5f - r * r * y ); 
    return r; 
} 

When looking at the parameters to the trigonometric functions some key observations 

can be made. Both parameters to the arc tangent function are always positive and the 

parameters to the sine functions are always in the range [0, PI/2]. This allows the 

trigonometric functions to be replaced with fast and accurate polynomial approximations 

without the need for time consuming range reductions.  

When the angle is always in the range [0, PI/2] the sine function can be replaced with a 

polynomial approximation without the need for any logic [19,20,21,22]. The following 

function approximates the sine function for angles in the range [0, PI/2]. The maximum 

absolute error is 2.308 x 10-9.  

float SinZeroHalfPI( float a ) { 
    float s, t; 
 
    s = a * a; 
    t = -2.39e-08f; 
    t *= s; 
    t += 2.7526e-06f; 
    t *= s; 
    t += -1.98409e-04f; 
    t *= s; 
    t += 8.3333315e-03f; 
    t *= s; 
    t += -1.666666664e-01f; 
    t *= s; 
    t += 1.0f; 
    t *= a; 
    return t; 
} 

When both parameters are always positive the arc tangent function can be replaced with 

a polynomial approximation without the need for range reduction [19,20,21,22]. The 

following function approximates the arc tangent function with a maximum absolute error 

of 1.359 x 10-8.  

float ATanPositive( float y, float x ) { 
    float a, d, s, t; 
 
    if ( y > x ) { 
        a = -x / y; 
        d = M_PI / 2; 
    } else { 
        a = y / x; 
        d = 0.0f; 
    } 
    s = a * a; 
    t = 0.0028662257f; 
    t *= s; 



    t += -0.0161657367f; 
    t *= s; 
    t += 0.0429096138f; 
    t *= s; 
    t += -0.0752896400f; 
    t *= s; 
    t += 0.1065626393f; 
    t *= s; 
    t += -0.1420889944f; 
    t *= s; 
    t += 0.1999355085f; 
    t *= s; 
    t += -0.3333314528f; 
    t *= s; 
    t += 1.0f; 
    t *= a; 
    t += d; 
    return t; 
} 

The arc cosine in the original routine could also have been approximated directly with a 

polynomial without using the fundamental identities to transform the trigonometric 

functions. However, an accurate polynomial approximation of the arc cosine is much 

more expensive than an accurate polynomial approximation of the arc tangent.  

The following code shows the optimized Slerp which uses the polynomial approximations 

for the trigonometric functions.  

void SlerpOptimized( const Quaternion &from, const Quaternion &to, float t, Quaternion &result ) { 
    float cosom, absCosom, sinom, sinSqr, omega, scale0, scale1; 
 
    cosom = from.x * to.x + from.y * to.y + from.z * to.z + from.w * to.w; 
    absCosom = fabs( cosom ); 
    if ( ( 1.0f - absCosom ) > 1e-6f ) { 
        sinSqr = 1.0f - absCosom * absCosom; 
        sinom = ReciprocalSqrt( sinSqr ); 
        omega = ATanPositive( sinSqr * sinom, absCosom ); 
        scale0 = SinZeroHalfPI( ( 1.0f - t ) * omega ) * sinom; 
        scale1 = SinZeroHalfPI( t * omega ) * sinom; 
    } else { 
        scale0 = 1.0f - t; 
        scale1 = t; 
    } 
    scale1 = ( cosom >= 0.0f ) ? scale1 : -scale1; 
    result.x = scale0 * from.x + scale1 * to.x; 
    result.y = scale0 * from.y + scale1 * to.y; 
    result.z = scale0 * from.z + scale1 * to.z; 
    result.w = scale0 * from.w + scale1 * to.w; 
} 

The above optimized Slerp is typically faster on today's hardware, especially if the two 

sine calculations are inlined and properly interleaved. Slerp can be made even faster on 

today's SIMD capable architectures as shown in the next section.  

6. SSE Optimized Slerp  
Most algorithms do not use a single isolated spherical l inear interpolation between two 

quaternions. For instance a skeletal animation system usually requires interpolation 

between two key frames. Each of the key frames is a list with joints that define a pose 

of the skeleton. A joint from a key frame is stored as a quaternion for the orientation 

and a 4D vector for the position. The SSE optimized routine presented here will 

interpolate between two lists with joints as shown below.  

struct Vec4 { 
    float       x, y, z, w; 
}; 
 



struct JointQuat { 
    Quaternion  q; 
    Vec4        t; 
}; 
 
void Vec4Lerp( const Vec4 &from, const Vec4 &to, const float t, Vec4 &result ) { 
    float s = 1.0f - t; 
    result.x = from.x * s + to.x * t; 
    result.y = from.y * s + to.y * t; 
    result.z = from.z * s + to.z * t; 
    result.w = from.w * s + to.w * t; 
} 
 
void SlerpJoints( JointQuat *joints, const JointQuat *blendJoints, const float lerp, const int *index, const int 
numJoints ) { 
    int i; 
 
    for ( i = 0; i < numJoints; i++ ) { 
        int j = index[i]; 
        Slerp( joints[j].q, blendJoints[j].q, lerp, joints[j].q ); 
        Vec4Lerp( joints[j].t, blendJoints[j].t, lerp, joints[j].t ); 
    } 
} 

An additional index is used in the above code to allow a selection of joints from the two 

lists to be interpolated instead of the complete lists. This may be useful for an 

animation system where during certain animations only a subset of all the joints are 

animated.  

The best approach to SIMD is usually to exploit parallelism through increased 

throughput. The routine presented here will interpolate between four pairs of joints per 

iteration.  

The interpolation of the positions stored with the joints is best calculated individually 

for each pair of joints. After all this interpolation is no more than the addition of two 

scaled 4D vectors which trivially maps to SSE instructions.  

For the interpolation of the quaternions the scalar instructions are best replaced with 

functionally equivalent SSE instructions. This requires a swizzle because the 

quaternions are stored per joint while the individual components of four quaternions 

need to be grouped into SSE registers. For this swizzle four quaternions are loaded into 

four SSE registers as a 4x4 matrix. This 4x4 matrix is then transposed in the registers 

with several unpack and shuffle instructions.  

After the swizzle the scalar instructions of the optimized Slerp routine can be replaced 

with functionally equivalent SSE instructions. This is trivial for the most part but 

several details need to be worked out.  

The Intel SSE instruction set has an instruction to calculate the reciprocal square root 

with 12 bits of precision. A simple Newton-Rapson iteration can be used to improve the 

accuracy [24]. The following assembler code calculates the reciprocal square root of the 

four floating point numbers stored in the 'xmm0' register. The result is stored in the 

same register.  

#define ALIGN4_INIT1( X, I ) __declspec(align(16)) static X[4] = { I, I, I, I }
 
ALIGN4_INIT1( float SIMD_SP_rsqrt_c0,  3.0f ); 
ALIGN4_INIT1( float SIMD_SP_rsqrt_c1, -0.5f ); 
 
rsqrtps     xmm1, xmm0 
mulps       xmm0, xmm1 
mulps       xmm0, xmm1 
subps       xmm0, SIMD_SP_rsqrt_c0 



mulps       xmm1, SIMD_SP_rsqrt_c1 
mulps       xmm0, xmm1 

The polynomial approximation of the sine function in the range [0, PI/2] is trivially 

implemented with SSE instructions. The following code calculates four sines for the 

angles stored in 'xmm0' and the result is stored in 'xmm2'.  

ALIGN4_INIT1( float SIMD_SP_sin_c0, -2.39e-08f ); 
ALIGN4_INIT1( float SIMD_SP_sin_c1,  2.7526e-06f ); 
ALIGN4_INIT1( float SIMD_SP_sin_c2, -1.98409e-04f ); 
ALIGN4_INIT1( float SIMD_SP_sin_c3,  8.3333315e-03f ); 
ALIGN4_INIT1( float SIMD_SP_sin_c4, -1.666666664e-01f );
ALIGN4_INIT1( float SIMD_SP_one, 1.0f ); 
 
movaps      xmm1, xmm0 
mulps       xmm1, xmm1 
movaps      xmm2, SIMD_SP_sin_c0 
mulps       xmm2, xmm1 
addps       xmm2, SIMD_SP_sin_c1 
mulps       xmm2, xmm1 
addps       xmm2, SIMD_SP_sin_c2 
mulps       xmm2, xmm1 
addps       xmm2, SIMD_SP_sin_c3 
mulps       xmm2, xmm1 
addps       xmm2, SIMD_SP_sin_c4 
mulps       xmm2, xmm1 
addps       xmm2, SIMD_SP_one 
mulps       xmm2, xmm0 

The logic at the beginning of the arc tangent approximation is a bit trickier to 

implement with SSE instructions. Basically the smallest of the two parameters is divided 

by the largest one. If 'y' is larger than 'x' the result of the division is negated and PI/2 

is added to the result of the polynomial. The 'minps' and 'maxps' instructions can be 

used to select the minimum and the maximum of the two parameters. The 'cmpeqps' 

instruction can then be used to compare 'x' with the minimum of the two parameters. If 

'x' is equal to the minimum then the 'cmpeqps' instruction fil ls the result register with 

all ones and if 'x' is the maximum then the result register is fi l led with all zeros. This 

bit mask can be used to either leave or fl ip the sign bit of the result of the division, and 

also to add either zero or PI/2 to the result of the polynomial. The following SSE code 

implements the logic for the arc tangent approximation.  

 

#define IEEE_SP_SIGN    ((unsigned long) ( 1 << 31 )) 
 
ALIGN4_INIT1( float SIMD_SP_halfPI, M_PI/2 ); 
ALIGN4_INIT1( unsigned long SIMD_SP_signBit, IEEE_SP_SIGN ); 
 
movaps      xmm3, xmm0 
minps       xmm0, xmm1              // xmm0 = ( y > x ) ? x : y 
maxps       xmm1, xmm3              // xmm1 = ( y > x ) ? y : x 
cmpeqps     xmm3, xmm0              // xmm3 = ( y > x ) ? 0xFFFFFFFF : 0x00000000
divps       xmm0, xmm1              // xmm0 = ( y > x ) ? x / y : y / x 
movaps      xmm1, xmm3 
andps       xmm1, SIMD_SP_signBit   // xmm1 = ( y > x ) ? 0x80000000 : 0x00000000
xorps       xmm0, xmm1              // xmm0 = ( y > x ) ? -x / y : y / x 
andps       xmm3, SIMD_SP_halfPI    // xmm3 = ( y > x ) ? PI/2 : 0.0f 

Instead of using the slow 'divps' instruction the 'rcpps' instruction can be used. This 

instruction calculates the reciprocal of a number with 12 bits of precision. A Newton-

Rapson iteration can be used to improve the accuracy of the reciprocal [24].  

rcpps       xmm2, xmm1 
mulps       xmm1, xmm2 
mulps       xmm1, xmm2 
addps       xmm2, xmm2 
subps       xmm2, xmm1      // xmm2 = ( y > x ) ? 1 / y : 1 / x



mulps       xmm0, xmm2      // xmm0 = ( y > x ) ? x / y : y / x

The following SSE code implements the complete arc tangent function with two positive 

parameters. The parameters 'x' and 'y' are assumed to be stored in 'xmm0' and 'xmm1' 

respectively. The result is stored in the register 'xmm2'.  

ALIGN4_INIT1( float SIMD_SP_atan_c0,  0.0028662257f ); 
ALIGN4_INIT1( float SIMD_SP_atan_c1, -0.0161657367f ); 
ALIGN4_INIT1( float SIMD_SP_atan_c2,  0.0429096138f ); 
ALIGN4_INIT1( float SIMD_SP_atan_c3, -0.0752896400f ); 
ALIGN4_INIT1( float SIMD_SP_atan_c4,  0.1065626393f ); 
ALIGN4_INIT1( float SIMD_SP_atan_c5, -0.1420889944f ); 
ALIGN4_INIT1( float SIMD_SP_atan_c6,  0.1999355085f ); 
ALIGN4_INIT1( float SIMD_SP_atan_c7, -0.3333314528f ); 
 
movaps      xmm3, xmm0 
minps       xmm0, xmm1              // xmm0 = ( y > x ) ? x : y 
maxps       xmm1, xmm3              // xmm1 = ( y > x ) ? y : x 
cmpeqps     xmm3, xmm0              // xmm3 = ( y > x ) ? 0xFFFFFFFF : 0x00000000
rcpps       xmm2, xmm1 
mulps       xmm1, xmm2 
mulps       xmm1, xmm2 
addps       xmm2, xmm2 
subps       xmm2, xmm1              // xmm2 = ( y > x ) ? 1 / y : 1 / x 
mulps       xmm0, xmm2              // xmm0 = ( y > x ) ? x / y : y / x 
movaps      xmm1, xmm3 
andps       xmm1, SIMD_SP_signBit   // xmm1 = ( y > x ) ? 0x80000000 : 0x00000000
xorps       xmm0, xmm1              // xmm0 = ( y > x ) ? -x / y : y / x 
andps       xmm3, SIMD_SP_halfPI    // xmm3 = ( y > x ) ? PI/2 : 0.0f 
movaps      xmm1, xmm0 
mulps       xmm1, xmm1 
movaps      xmm2, SIMD_SP_atan_c0 
mulps       xmm2, xmm1 
addps       xmm2, SIMD_SP_atan_c1 
mulps       xmm2, xmm1 
addps       xmm2, SIMD_SP_atan_c2 
mulps       xmm2, xmm1 
addps       xmm2, SIMD_SP_atan_c3 
mulps       xmm2, xmm1 
addps       xmm2, SIMD_SP_atan_c4 
mulps       xmm2, xmm1 
addps       xmm2, SIMD_SP_atan_c5 
mulps       xmm2, xmm1 
addps       xmm2, SIMD_SP_atan_c6 
mulps       xmm2, xmm1 
addps       xmm2, SIMD_SP_atan_c7 
mulps       xmm2, xmm1 
addps       xmm2, SIMD_SP_one 
mulps       xmm2, xmm0 
addps       xmm2, xmm3 

The complete routine to interpolate between two lists with joints is l isted in appendix A. 

The code in appendix A assumes the lists with joints are 16-byte aligned. Because each 

joint is 32 bytes in size it is better on a Pentium 4 to make the lists 32 or 64-byte 

aligned to assure the least number of cache lines are used per iteration.  

For comparison an SSE optimized version of linear interpolation with renormalization 

has been implemented as well. The code for this routine is l isted in appendix B.  

7. Results  
The various routines for interpolation between joints have been tested on an Intel® 

Pentium® 4 Processor on 130nm Technology and an Intel® Pentium® 4 Processor on 

90nm Technology. The routines interpolated joints from two lists with 1024 joints each. 

The total number of clock cycles and the number of clock cycles per joint for each 

routine on the different CPUs are listed in the following table. Keep in mind that the 



routines do not just interpolate quaternions but interpolate between joints which 

involves both a quaternion for the orientation and a 4D vector for the position.  

Hot Cache Clock Cycle Counts 

Routine 
P4 130nm total  clock 

cycles 
P4 130nm clock 

cycles per element 
P4 90nm total   

clock cycles 
P4 90nm clock cycles 

per element 

SlerpJoints (C)   1035248 1011 1041893 1018 

SlerpJoints (SSE)   109112 107 131517 128 

LerpJoints (C)   218996 213 253350 248 

LerpJoints (SSE)   51080 50 52848 52 

The maximum absolute error of the SSE optimized Slerp compared to the original Slerp 

is 4.768 x 10-7. The performance of the optimized Slerp can easily be improved by using 

lower degree polynomials. However, this would obviously also decrease the accuracy 

and the routine implemented here favors high accuracy over the additional speed 

improvement.  

8. Conclusion  
When optimizing code the fastest algorithm that suits the needs of the application 

should be chosen first. For some applications linear interpolation with renormalization 

may be the perfect trade between speed and interpolation properties. Once the right 

algorithm has been chosen this algorithm should first be optimized on an algorithmic 

and mathematical level. Only the final step in the optimization process involves 

exploiting the instruction set of an SIMD capable architecture.  

One might argue that the optimized spherical l inear interpolation presented here is only 

faster at the cost of loosing accuracy since it uses various approximations. However, 

the use of floating point numbers means that most calculations loose precision one way 

or the other. The optimized Slerp presented here is significantly faster at a minimal loss 

of accuracy. Redundant and duplicate calculations are avoided and the Intel SSE 

instructions are used to get the most out of every clock cycle.  

This article shows that spherical l inear interpolation (Slerp) does not have to be 

significantly slower than linear interpolation with renormalization (Lerp), especially 

when the Intel SSE instruction set is used to exploit parallelism. Interestingly the SSE 

optimized Slerp is two times faster than the C code for the Lerp. In the end the SSE 

optimized Lerp uses the least number of clock cycles and may stil l be preferred when a 

non-constant velocity during the interpolation is not an issue. However, the SSE 

optimized Slerp is well over 7 times faster than the commonly used implementation in C 

and makes the interpolation significantly faster when a constant angular velocity is 

required.  
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/* 
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    Copyright (C) 2005 Id Software, Inc. 
    Written by J.M.P. van Waveren 
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    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU 
    Lesser General Public License for more details. 
*/ 
 
#define assert_16_byte_aligned( pointer )   assert( (((UINT_PTR)(pointer))&15) == 0 ); 
#define ALIGN16( x )                        __declspec(align(16)) x 
#define ALIGN4_INIT1( X, I )                ALIGN16( static X[4] = { I, I, I, I } ) 
#define R_SHUFFLE_PS( x, y, z, w )          (( (w) & 3 ) << 6 | ( (z) & 3 ) << 4 | ( (y) & 3 ) << 2 | ( (x) & 3 
)) 
 
#define IEEE_SP_ZERO                        0 
#define IEEE_SP_SIGN                        ((unsigned long) ( 1 << 31 )) 
 
ALIGN4_INIT1( unsigned long SIMD_SP_signBit, IEEE_SP_SIGN ); 
 
ALIGN4_INIT1( float SIMD_SP_one, 1.0f ); 
ALIGN4_INIT1( float SIMD_SP_halfPI, M_PI/2 ); 
 
ALIGN4_INIT1( float SIMD_SP_rsqrt_c0,  3.0f ); 
ALIGN4_INIT1( float SIMD_SP_rsqrt_c1, -0.5f ); 
 
ALIGN4_INIT1( float SIMD_SP_sin_c0, -2.39e-08f ); 
ALIGN4_INIT1( float SIMD_SP_sin_c1,  2.7526e-06f ); 
ALIGN4_INIT1( float SIMD_SP_sin_c2, -1.98409e-04f ); 
ALIGN4_INIT1( float SIMD_SP_sin_c3,  8.3333315e-03f ); 
ALIGN4_INIT1( float SIMD_SP_sin_c4, -1.666666664e-01f ); 
 
ALIGN4_INIT1( float SIMD_SP_atan_c0,  0.0028662257f ); 
ALIGN4_INIT1( float SIMD_SP_atan_c1, -0.0161657367f ); 
ALIGN4_INIT1( float SIMD_SP_atan_c2,  0.0429096138f ); 
ALIGN4_INIT1( float SIMD_SP_atan_c3, -0.0752896400f ); 
ALIGN4_INIT1( float SIMD_SP_atan_c4,  0.1065626393f ); 
ALIGN4_INIT1( float SIMD_SP_atan_c5, -0.1420889944f ); 
ALIGN4_INIT1( float SIMD_SP_atan_c6,  0.1999355085f ); 
ALIGN4_INIT1( float SIMD_SP_atan_c7, -0.3333314528f ); 
 
#define TRANSPOSE_4x4( reg0, reg1, reg2, reg3, reg4 )                                           \ 
    __asm   movaps      reg4, reg2                              /* reg4 =  8,  9, 10, 11 */     \ 
    __asm   unpcklps    reg2, reg3                              /* reg2 =  8, 12,  9, 13 */     \ 
    __asm   unpckhps    reg4, reg3                              /* reg4 = 10, 14, 11, 15 */     \ 
    __asm   movaps      reg3, reg0                              /* reg3 =  0,  1,  2,  3 */     \ 
    __asm   unpcklps    reg0, reg1                              /* reg0 =  0,  4,  1,  5 */     \ 
    __asm   unpckhps    reg3, reg1                              /* reg3 =  2,  6,  3,  7 */     \ 
    __asm   movaps      reg1, reg0                              /* reg1 =  0,  4,  1,  5 */     \ 
    __asm   shufps      reg0, reg2, R_SHUFFLE_PS( 0, 1, 0, 1 )  /* reg0 =  0,  4,  8, 12 */     \ 
    __asm   shufps      reg1, reg2, R_SHUFFLE_PS( 2, 3, 2, 3 )  /* reg1 =  1,  5,  9, 13 */     \ 
    __asm   movaps      reg2, reg3                              /* reg2 =  2,  6,  3,  7 */     \ 
    __asm   shufps      reg2, reg4, R_SHUFFLE_PS( 0, 1, 0, 1 )  /* reg2 =  2,  6, 10, 14 */     \ 
    __asm   shufps      reg3, reg4, R_SHUFFLE_PS( 2, 3, 2, 3 )  /* reg3 =  3,  7, 11, 15 */ 
 
struct Quaternion { 
    float       x, y, z, w; 
}; 
 
struct Vec4 { 
    float       x, y, z, w; 
}; 
 
struct JointQuat { 
    Quaternion  q; 
    Vec4        t; 
}; 
 
#define JOINTQUAT_SIZE          (8*4) 
#define JOINTQUAT_SIZE_SHIFT    (5) 
#define JOINTQUAT_Q_OFFSET      (0*4) 
#define JOINTQUAT_T_OFFSET      (4*4) 
 
void SlerpJoints( JointQuat *joints, const JointQuat *blendJoints, const float lerp, const int *index, const int 
numJoints ) { 
 
    assert_16_byte_aligned( joints ); 
    assert_16_byte_aligned( blendJoints ); 
    assert_16_byte_aligned( JOINTQUAT_Q_OFFSET ); 
    assert_16_byte_aligned( JOINTQUAT_T_OFFSET ); 
 
    ALIGN16( float jointQuat0[4]; ) 
    ALIGN16( float jointQuat1[4]; ) 
    ALIGN16( float jointQuat2[4]; ) 
    ALIGN16( float jointQuat3[4]; ) 
    ALIGN16( float blendQuat0[4]; ) 



    ALIGN16( float blendQuat1[4]; ) 
    ALIGN16( float blendQuat2[4]; ) 
    ALIGN16( float blendQuat3[4]; ) 
    int a0, a1, a2, a3; 
 
    __asm { 
        movss       xmm7, lerp 
        cmpnless    xmm7, SIMD_SP_zero 
        movmskps    ecx, xmm7 
        test        ecx, 1 
        jz          done1 
 
        mov         eax, numJoints 
        shl         eax, 2 
        mov         esi, joints 
        mov         edi, blendJoints 
        mov         edx, index 
 
        add         edx, eax 
        neg         eax 
        jz          done1 
 
        movss       xmm7, lerp 
        cmpnltss    xmm7, SIMD_SP_one 
        movmskps    ecx, xmm7 
        test        ecx, 1 
        jz          lerpJoints 
 
    loopCopy: 
        mov         ecx, [edx+eax] 
        shl         ecx, JOINTQUAT_SIZE_SHIFT 
 
        add         eax, 1*4 
 
        movaps      xmm0, [edi+ecx+JOINTQUAT_Q_OFFSET] 
        movaps      xmm1, [edi+ecx+JOINTQUAT_T_OFFSET] 
        movaps      [esi+ecx+JOINTQUAT_Q_OFFSET], xmm0 
        movaps      [esi+ecx+JOINTQUAT_T_OFFSET], xmm1 
 
        jl          loopCopy 
 
        jmp         done1 
 
    lerpJoints: 
        add         eax, 4*4 
        jge         done4 
 
    loopJoint4: 
        movss       xmm3, lerp 
        shufps      xmm3, xmm3, R_SHUFFLE_PS( 0, 0, 0, 0 ) 
 
        mov         ecx, [edx+eax-4*4] 
        shl         ecx, JOINTQUAT_SIZE_SHIFT 
        mov         a0, ecx 
 
        // lerp first translations 
        movaps      xmm7, [edi+ecx+JOINTQUAT_T_OFFSET] 
        subps       xmm7, [esi+ecx+JOINTQUAT_T_OFFSET] 
        mulps       xmm7, xmm3 
        addps       xmm7, [esi+ecx+JOINTQUAT_T_OFFSET] 
        movaps      [esi+ecx+JOINTQUAT_T_OFFSET], xmm7 
 
        // load first quaternions 
        movaps      xmm0, [esi+ecx+JOINTQUAT_Q_OFFSET] 
        movaps      xmm4, [edi+ecx+JOINTQUAT_Q_OFFSET] 
 
        mov         ecx, [edx+eax-3*4] 
        shl         ecx, JOINTQUAT_SIZE_SHIFT 
        mov         a1, ecx 
 
        // lerp second translations 
        movaps      xmm7, [edi+ecx+JOINTQUAT_T_OFFSET] 
        subps       xmm7, [esi+ecx+JOINTQUAT_T_OFFSET] 
        mulps       xmm7, xmm3 
        addps       xmm7, [esi+ecx+JOINTQUAT_T_OFFSET] 
        movaps      [esi+ecx+JOINTQUAT_T_OFFSET], xmm7 
 
        // load second quaternions 
        movaps      xmm1, [esi+ecx+JOINTQUAT_Q_OFFSET] 
        movaps      xmm5, [edi+ecx+JOINTQUAT_Q_OFFSET] 
 



        mov         ecx, [edx+eax-2*4] 
        shl         ecx, JOINTQUAT_SIZE_SHIFT 
        mov         a2, ecx 
 
        // lerp third translations 
        movaps      xmm7, [edi+ecx+JOINTQUAT_T_OFFSET] 
        subps       xmm7, [esi+ecx+JOINTQUAT_T_OFFSET] 
        mulps       xmm7, xmm3 
        addps       xmm7, [esi+ecx+JOINTQUAT_T_OFFSET] 
        movaps      [esi+ecx+JOINTQUAT_T_OFFSET], xmm7 
 
        // load third quaternions 
        movaps      xmm2, [esi+ecx+JOINTQUAT_Q_OFFSET] 
        movaps      xmm6, [edi+ecx+JOINTQUAT_Q_OFFSET] 
 
        mov         ecx, [edx+eax-1*4] 
        shl         ecx, JOINTQUAT_SIZE_SHIFT 
        mov         a3, ecx 
 
        // lerp fourth translations 
        movaps      xmm7, [edi+ecx+JOINTQUAT_T_OFFSET] 
        subps       xmm7, [esi+ecx+JOINTQUAT_T_OFFSET] 
        mulps       xmm7, xmm3 
        addps       xmm7, [esi+ecx+JOINTQUAT_T_OFFSET] 
        movaps      [esi+ecx+JOINTQUAT_T_OFFSET], xmm7 
 
        // load fourth quaternions 
        movaps      xmm3, [esi+ecx+JOINTQUAT_Q_OFFSET] 
 
        TRANSPOSE_4x4( xmm0, xmm1, xmm2, xmm3, xmm7 ) 
 
        movaps      jointQuat0, xmm0 
        movaps      jointQuat1, xmm1 
        movaps      jointQuat2, xmm2 
        movaps      jointQuat3, xmm3 
 
        movaps      xmm7, [edi+ecx+JOINTQUAT_Q_OFFSET] 
 
        TRANSPOSE_4x4( xmm4, xmm5, xmm6, xmm7, xmm3 ) 
 
        movaps      blendQuat0, xmm4 
        movaps      blendQuat1, xmm5 
        movaps      blendQuat2, xmm6 
        movaps      blendQuat3, xmm7 
 
        // lerp quaternions 
        mulps       xmm0, xmm4 
        mulps       xmm1, xmm5 
        addps       xmm0, xmm1 
        mulps       xmm2, xmm6 
        addps       xmm0, xmm2 
        movaps      xmm3, jointQuat3 
        mulps       xmm3, blendQuat3 
        addps       xmm0, xmm3                  // xmm0 = cosom 
 
        movaps      xmm1, xmm0 
        movaps      xmm2, xmm0 
        andps       xmm1, SIMD_SP_signBit       // xmm1 = signBit 
        xorps       xmm0, xmm1 
        mulps       xmm2, xmm2 
 
        xorps       xmm4, xmm4 
        movaps      xmm3, SIMD_SP_one 
        subps       xmm3, xmm2                  // xmm3 = scale0 
        cmpeqps     xmm4, xmm3 
        andps       xmm4, SIMD_SP_tiny          // if values are zero replace them with a tiny number 
        andps       xmm3, SIMD_SP_absMask       // make sure the values are positive 
        orps        xmm3, xmm4 
 
        movaps      xmm2, xmm3 
        rsqrtps     xmm4, xmm2 
        mulps       xmm2, xmm4 
        mulps       xmm2, xmm4 
        subps       xmm2, SIMD_SP_rsqrt_c0 
        mulps       xmm4, SIMD_SP_rsqrt_c1 
        mulps       xmm2, xmm4 
        mulps       xmm3, xmm2                  // xmm3 = sqrt( scale0 ) 
 
        // omega0 = atan2( xmm3, xmm0 ) 
        movaps      xmm4, xmm0 
        minps       xmm0, xmm3 



        maxps       xmm3, xmm4 
        cmpeqps     xmm4, xmm0 
        rcpps       xmm5, xmm3 
        mulps       xmm3, xmm5 
        mulps       xmm3, xmm5 
        addps       xmm5, xmm5 
        subps       xmm5, xmm3                  // xmm5 = 1 / y or 1 / x 
        mulps       xmm0, xmm5                  // xmm0 = x / y or y / x 
        movaps      xmm3, xmm4 
        andps       xmm3, SIMD_SP_signBit 
        xorps       xmm0, xmm3                  // xmm0 = -x / y or y / x 
        andps       xmm4, SIMD_SP_halfPI        // xmm4 = HALF_PI or 0.0f 
        movaps      xmm3, xmm0 
        mulps       xmm3, xmm3                  // xmm3 = s 
        movaps      xmm5, SIMD_SP_atan_c0 
        mulps       xmm5, xmm3 
        addps       xmm5, SIMD_SP_atan_c1 
        mulps       xmm5, xmm3 
        addps       xmm5, SIMD_SP_atan_c2 
        mulps       xmm5, xmm3 
        addps       xmm5, SIMD_SP_atan_c3 
        mulps       xmm5, xmm3 
        addps       xmm5, SIMD_SP_atan_c4 
        mulps       xmm5, xmm3 
        addps       xmm5, SIMD_SP_atan_c5 
        mulps       xmm5, xmm3 
        addps       xmm5, SIMD_SP_atan_c6 
        mulps       xmm5, xmm3 
        addps       xmm5, SIMD_SP_atan_c7 
        mulps       xmm5, xmm3 
        addps       xmm5, SIMD_SP_one 
        mulps       xmm5, xmm0 
        addps       xmm5, xmm4                  // xmm5 = omega0 
 
        movss       xmm6, lerp                  // xmm6 = lerp 
        shufps      xmm6, xmm6, R_SHUFFLE_PS( 0, 0, 0, 0 ) 
        mulps       xmm6, xmm5                  // xmm6 = omega1 
        subps       xmm5, xmm6                  // xmm5 = omega0 
 
        // scale0 = sin( xmm5 ) * xmm2 
        // scale1 = sin( xmm6 ) * xmm2 
        movaps      xmm3, xmm5 
        movaps      xmm7, xmm6 
        mulps       xmm3, xmm3 
        mulps       xmm7, xmm7 
        movaps      xmm4, SIMD_SP_sin_c0 
        movaps      xmm0, SIMD_SP_sin_c0 
        mulps       xmm4, xmm3 
        mulps       xmm0, xmm7 
        addps       xmm4, SIMD_SP_sin_c1 
        addps       xmm0, SIMD_SP_sin_c1 
        mulps       xmm4, xmm3 
        mulps       xmm0, xmm7 
        addps       xmm4, SIMD_SP_sin_c2 
        addps       xmm0, SIMD_SP_sin_c2 
        mulps       xmm4, xmm3 
        mulps       xmm0, xmm7 
        addps       xmm4, SIMD_SP_sin_c3 
        addps       xmm0, SIMD_SP_sin_c3 
        mulps       xmm4, xmm3 
        mulps       xmm0, xmm7 
        addps       xmm4, SIMD_SP_sin_c4 
        addps       xmm0, SIMD_SP_sin_c4 
        mulps       xmm4, xmm3 
        mulps       xmm0, xmm7 
        addps       xmm4, SIMD_SP_one 
        addps       xmm0, SIMD_SP_one 
        mulps       xmm5, xmm4 
        mulps       xmm6, xmm0 
        mulps       xmm5, xmm2                  // xmm5 = scale0 
        mulps       xmm6, xmm2                  // xmm6 = scale1 
 
        xorps       xmm6, xmm1 
 
        movaps      xmm0, jointQuat0 
        mulps       xmm0, xmm5 
        movaps      xmm1, blendQuat0 
        mulps       xmm1, xmm6 
        addps       xmm0, xmm1 
 
        movaps      xmm1, jointQuat1 



        mulps       xmm1, xmm5 
        movaps      xmm2, blendQuat1 
        mulps       xmm2, xmm6 
        addps       xmm1, xmm2 
 
        movaps      xmm2, jointQuat2 
        mulps       xmm2, xmm5 
        movaps      xmm3, blendQuat2 
        mulps       xmm3, xmm6 
        addps       xmm2, xmm3 
 
        movaps      xmm3, jointQuat3 
        mulps       xmm3, xmm5 
        movaps      xmm4, blendQuat3 
        mulps       xmm4, xmm6 
        addps       xmm3, xmm4 
 
        add         eax, 4*4 
 
        // transpose xmm0, xmm1, xmm2, xmm3 to memory 
        movaps      xmm7, xmm0 
        movaps      xmm6, xmm2 
 
        unpcklps    xmm0, xmm1 
        unpcklps    xmm2, xmm3 
 
        mov         ecx, a0 
        movlps      [esi+ecx+JOINTQUAT_Q_OFFSET+0], xmm0 
        movlps      [esi+ecx+JOINTQUAT_Q_OFFSET+8], xmm2 
 
        mov         ecx, a1 
        movhps      [esi+ecx+JOINTQUAT_Q_OFFSET+0], xmm0 
        movhps      [esi+ecx+JOINTQUAT_Q_OFFSET+8], xmm2 
 
        unpckhps    xmm7, xmm1 
        unpckhps    xmm6, xmm3 
 
        mov         ecx, a2 
        movlps      [esi+ecx+JOINTQUAT_Q_OFFSET+0], xmm7 
        movlps      [esi+ecx+JOINTQUAT_Q_OFFSET+8], xmm6 
 
        mov         ecx, a3 
        movhps      [esi+ecx+JOINTQUAT_Q_OFFSET+0], xmm7 
        movhps      [esi+ecx+JOINTQUAT_Q_OFFSET+8], xmm6 
 
        jle         loopJoint4 
 
    done4: 
        sub         eax, 4*4 
        jz          done1 
 
    loopJoint1: 
        movss       xmm3, lerp 
        shufps      xmm3, xmm3, R_SHUFFLE_PS( 0, 0, 0, 0 ) 
 
        mov         ecx, [edx+eax] 
        shl         ecx, JOINTQUAT_SIZE_SHIFT 
 
        // lerp first translations 
        movaps      xmm7, [edi+ecx+JOINTQUAT_T_OFFSET] 
        subps       xmm7, [esi+ecx+JOINTQUAT_T_OFFSET] 
        mulps       xmm7, xmm3 
        addps       xmm7, [esi+ecx+JOINTQUAT_T_OFFSET] 
        movaps      [esi+ecx+JOINTQUAT_T_OFFSET], xmm7 
 
        // load first quaternions 
        movaps      xmm0, [esi+ecx+JOINTQUAT_Q_OFFSET] 
        movaps      xmm1, [edi+ecx+JOINTQUAT_Q_OFFSET] 
 
        movaps      jointQuat0, xmm0 
        movaps      blendQuat0, xmm1 
 
        // lerp quaternions 
        mulps       xmm1, xmm0 
        movhlps     xmm0, xmm1 
        addps       xmm1, xmm0 
        movaps      xmm0, xmm1 
        shufps      xmm0, xmm0, R_SHUFFLE_PS( 1, 0, 2, 3 ) 
        addss       xmm0, xmm1                  // xmm0 = cosom 
 
        movss       xmm1, xmm0 



        movss       xmm2, xmm0 
        andps       xmm1, SIMD_SP_signBit       // xmm1 = signBit 
        xorps       xmm0, xmm1 
        mulss       xmm2, xmm2 
 
        xorps       xmm4, xmm4 
        movss       xmm3, SIMD_SP_one 
        subss       xmm3, xmm2                  // xmm3 = scale0 
        cmpeqss     xmm4, xmm3 
        andps       xmm4, SIMD_SP_tiny          // if values are zero replace them with a tiny number 
        andps       xmm3, SIMD_SP_absMask       // make sure the values are positive 
        orps        xmm3, xmm4 
 
        movss       xmm2, xmm3 
        rsqrtss     xmm4, xmm2 
        mulss       xmm2, xmm4 
        mulss       xmm2, xmm4 
        subss       xmm2, SIMD_SP_rsqrt_c0 
        mulss       xmm4, SIMD_SP_rsqrt_c1 
        mulss       xmm2, xmm4 
        mulss       xmm3, xmm2                  // xmm3 = sqrt( scale0 ) 
 
        // omega0 = atan2( xmm3, xmm0 ) 
        movss       xmm4, xmm0 
        minss       xmm0, xmm3 
        maxss       xmm3, xmm4 
        cmpeqss     xmm4, xmm0 
        rcpss       xmm5, xmm3 
        mulss       xmm3, xmm5 
        mulss       xmm3, xmm5 
        addss       xmm5, xmm5 
        subss       xmm5, xmm3                  // xmm5 = 1 / y or 1 / x 
        mulss       xmm0, xmm5                  // xmm0 = x / y or y / x 
        movss       xmm3, xmm4 
        andps       xmm3, SIMD_SP_signBit 
        xorps       xmm0, xmm3                  // xmm0 = -x / y or y / x 
        andps       xmm4, SIMD_SP_halfPI        // xmm4 = HALF_PI or 0.0f 
        movss       xmm3, xmm0 
        mulss       xmm3, xmm3                  // xmm3 = s 
        movss       xmm5, SIMD_SP_atan_c0 
        mulss       xmm5, xmm3 
        addss       xmm5, SIMD_SP_atan_c1 
        mulss       xmm5, xmm3 
        addss       xmm5, SIMD_SP_atan_c2 
        mulss       xmm5, xmm3 
        addss       xmm5, SIMD_SP_atan_c3 
        mulss       xmm5, xmm3 
        addss       xmm5, SIMD_SP_atan_c4 
        mulss       xmm5, xmm3 
        addss       xmm5, SIMD_SP_atan_c5 
        mulss       xmm5, xmm3 
        addss       xmm5, SIMD_SP_atan_c6 
        mulss       xmm5, xmm3 
        addss       xmm5, SIMD_SP_atan_c7 
        mulss       xmm5, xmm3 
        addss       xmm5, SIMD_SP_one 
        mulss       xmm5, xmm0 
        addss       xmm5, xmm4                  // xmm5 = omega0 
 
        movss       xmm6, lerp                  // xmm6 = lerp 
        mulss       xmm6, xmm5                  // xmm6 = omega1 
        subss       xmm5, xmm6                  // xmm5 = omega0 
 
        // scale0 = sin( xmm5 ) * xmm2 
        // scale1 = sin( xmm6 ) * xmm2 
        movss       xmm3, xmm5 
        movss       xmm7, xmm6 
        mulss       xmm3, xmm3 
        mulss       xmm7, xmm7 
        movss       xmm4, SIMD_SP_sin_c0 
        movss       xmm0, SIMD_SP_sin_c0 
        mulss       xmm4, xmm3 
        mulss       xmm0, xmm7 
        addss       xmm4, SIMD_SP_sin_c1 
        addss       xmm0, SIMD_SP_sin_c1 
        mulss       xmm4, xmm3 
        mulss       xmm0, xmm7 
        addss       xmm4, SIMD_SP_sin_c2 
        addss       xmm0, SIMD_SP_sin_c2 
        mulss       xmm4, xmm3 
        mulss       xmm0, xmm7 



        addss       xmm4, SIMD_SP_sin_c3 
        addss       xmm0, SIMD_SP_sin_c3 
        mulss       xmm4, xmm3 
        mulss       xmm0, xmm7 
        addss       xmm4, SIMD_SP_sin_c4 
        addss       xmm0, SIMD_SP_sin_c4 
        mulss       xmm4, xmm3 
        mulss       xmm0, xmm7 
        addss       xmm4, SIMD_SP_one 
        addss       xmm0, SIMD_SP_one 
        mulss       xmm5, xmm4 
        mulss       xmm6, xmm0 
        mulss       xmm5, xmm2                  // xmm5 = scale0 
        mulss       xmm6, xmm2                  // xmm6 = scale1 
 
        xorps       xmm6, xmm1 
 
        shufps      xmm5, xmm5, R_SHUFFLE_PS( 0, 0, 0, 0 ) 
        mulps       xmm5, jointQuat0 
        shufps      xmm6, xmm6, R_SHUFFLE_PS( 0, 0, 0, 0 ) 
        mulps       xmm6, blendQuat0 
        addps       xmm5, xmm6 
 
        movaps      [esi+ecx+JOINTQUAT_Q_OFFSET], xmm5 
 
        add         eax, 1*4 
        jl          loopJoint1 
 
    done1: 
    } 
} 

 

Appendix B  
/* 
    SSE Optimized Linear Interpolation between Quaternions 
    Copyright (C) 2005 Id Software, Inc. 
    Written by J.M.P. van Waveren 
 
    This code is free software; you can redistribute it and/or 
    modify it under the terms of the GNU Lesser General Public 
    License as published by the Free Software Foundation; either 
    version 2.1 of the License, or (at your option) any later version. 
 
    This code is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU 
    Lesser General Public License for more details. 
*/ 
 
void LerpJoints( JointQuat *joints, const JointQuat *blendJoints, const float lerp, const int *index, const int 
numJoints ) { 
 
    assert_16_byte_aligned( joints ); 
    assert_16_byte_aligned( blendJoints ); 
    assert_16_byte_aligned( JOINTQUAT_Q_OFFSET ); 
    assert_16_byte_aligned( JOINTQUAT_T_OFFSET ); 
 
    ALIGN16( float jointQuat3[4]; ) 
    ALIGN16( float blendQuat3[4]; ) 
    ALIGN16( float scaledLerp; ) 
    int a0, a1, a2, a3; 
 
    __asm { 
        movss       xmm7, lerp 
        cmpnless    xmm7, SIMD_SP_zero 
        movmskps    ecx, xmm7 
        test        ecx, 1 
        jz          done1 
 
        mov         eax, numJoints 
        shl         eax, 2 
        mov         esi, joints 
        mov         edi, blendJoints 
        mov         edx, index 
 
        add         edx, eax 



        neg         eax 
        jz          done1 
 
        movss       xmm7, lerp 
        cmpnltss    xmm7, SIMD_SP_one 
        movmskps    ecx, xmm7 
        test        ecx, 1 
        jz          lerpJoints 
 
    loopCopy: 
        mov         ecx, [edx+eax] 
        shl         ecx, JOINTQUAT_SIZE_SHIFT 
 
        add         eax, 1*4 
 
        movaps      xmm0, [edi+ecx+JOINTQUAT_Q_OFFSET] 
        movaps      xmm1, [edi+ecx+JOINTQUAT_T_OFFSET] 
        movaps      [esi+ecx+JOINTQUAT_Q_OFFSET], xmm0 
        movaps      [esi+ecx+JOINTQUAT_T_OFFSET], xmm1 
 
        jl          loopCopy 
 
        jmp         done1 
 
    lerpJoints: 
        movss       xmm7, lerp 
        movss       xmm6, SIMD_SP_one 
        subss       xmm6, xmm7 
        divss       xmm7, xmm6 
        movss       scaledLerp, xmm7 
 
        add         eax, 4*4 
        jge         done4 
 
    loopJoint4: 
        movss       xmm3, lerp 
        shufps      xmm3, xmm3, R_SHUFFLE_PS( 0, 0, 0, 0 ) 
 
        mov         ecx, [edx+eax-4*4] 
        shl         ecx, JOINTQUAT_SIZE_SHIFT 
        mov         a0, ecx 
 
        // lerp first translations 
        movaps      xmm7, [edi+ecx+JOINTQUAT_T_OFFSET] 
        subps       xmm7, [esi+ecx+JOINTQUAT_T_OFFSET] 
        mulps       xmm7, xmm3 
        addps       xmm7, [esi+ecx+JOINTQUAT_T_OFFSET] 
        movaps      [esi+ecx+JOINTQUAT_T_OFFSET], xmm7 
 
        // load first quaternions 
        movaps      xmm0, [esi+ecx+JOINTQUAT_Q_OFFSET] 
        movaps      xmm4, [edi+ecx+JOINTQUAT_Q_OFFSET] 
 
        mov         ecx, [edx+eax-3*4] 
        shl         ecx, JOINTQUAT_SIZE_SHIFT 
        mov         a1, ecx 
 
        // lerp second translations 
        movaps      xmm7, [edi+ecx+JOINTQUAT_T_OFFSET] 
        subps       xmm7, [esi+ecx+JOINTQUAT_T_OFFSET] 
        mulps       xmm7, xmm3 
        addps       xmm7, [esi+ecx+JOINTQUAT_T_OFFSET] 
        movaps      [esi+ecx+JOINTQUAT_T_OFFSET], xmm7 
 
        // load second quaternions 
        movaps      xmm1, [esi+ecx+JOINTQUAT_Q_OFFSET] 
        movaps      xmm5, [edi+ecx+JOINTQUAT_Q_OFFSET] 
 
        mov         ecx, [edx+eax-2*4] 
        shl         ecx, JOINTQUAT_SIZE_SHIFT 
        mov         a2, ecx 
 
        // lerp third translations 
        movaps      xmm7, [edi+ecx+JOINTQUAT_T_OFFSET] 
        subps       xmm7, [esi+ecx+JOINTQUAT_T_OFFSET] 
        mulps       xmm7, xmm3 
        addps       xmm7, [esi+ecx+JOINTQUAT_T_OFFSET] 
        movaps      [esi+ecx+JOINTQUAT_T_OFFSET], xmm7 
 
        // load third quaternions 
        movaps      xmm2, [esi+ecx+JOINTQUAT_Q_OFFSET] 



        movaps      xmm6, [edi+ecx+JOINTQUAT_Q_OFFSET] 
 
        mov         ecx, [edx+eax-1*4] 
        shl         ecx, JOINTQUAT_SIZE_SHIFT 
        mov         a3, ecx 
 
        // lerp fourth translations 
        movaps      xmm7, [edi+ecx+JOINTQUAT_T_OFFSET] 
        subps       xmm7, [esi+ecx+JOINTQUAT_T_OFFSET] 
        mulps       xmm7, xmm3 
        addps       xmm7, [esi+ecx+JOINTQUAT_T_OFFSET] 
        movaps      [esi+ecx+JOINTQUAT_T_OFFSET], xmm7 
 
        // load fourth quaternions 
        movaps      xmm3, [esi+ecx+JOINTQUAT_Q_OFFSET] 
 
        TRANSPOSE_4x4( xmm0, xmm1, xmm2, xmm3, xmm7 ) 
 
        movaps      jointQuat3, xmm3 
 
        movaps      xmm7, [edi+ecx+JOINTQUAT_Q_OFFSET] 
 
        TRANSPOSE_4x4( xmm4, xmm5, xmm6, xmm7, xmm3 ) 
 
        movaps      blendQuat3, xmm7 
 
        // lerp quaternions 
        movaps      xmm3, xmm0 
        mulps       xmm3, xmm4 
        movaps      xmm7, xmm1 
        mulps       xmm7, xmm5 
        addps       xmm3, xmm7 
        movaps      xmm7, xmm2 
        mulps       xmm7, xmm6 
        addps       xmm3, xmm7 
        movaps      xmm7, jointQuat3 
        mulps       xmm7, blendQuat3 
        addps       xmm3, xmm7                  // xmm3 = cosom 
        andps       xmm3, SIMD_SP_signBit       // xmm3 = signBit 
        movss       xmm7, scaledLerp 
        shufps      xmm7, xmm7, R_SHUFFLE_PS( 0, 0, 0, 0 ) 
        xorps       xmm7, xmm3                  // xmm7 = scaledLerp ^ signBit 
 
        mulps       xmm4, xmm7 
        addps       xmm4, xmm0 
        movaps      xmm0, xmm4 
        mulps       xmm0, xmm0 
 
        mulps       xmm5, xmm7 
        addps       xmm5, xmm1 
        movaps      xmm1, xmm5 
        mulps       xmm1, xmm1 
        addps       xmm0, xmm1 
 
        mulps       xmm6, xmm7 
        addps       xmm6, xmm2 
        movaps      xmm2, xmm6 
        mulps       xmm2, xmm2 
        addps       xmm0, xmm2 
 
        mulps       xmm7, blendQuat3 
        addps       xmm7, jointQuat3 
        movaps      xmm1, xmm7 
        mulps       xmm1, xmm1 
        addps       xmm0, xmm1 
 
        rsqrtps     xmm2, xmm0 
        mulps       xmm0, xmm2 
        mulps       xmm0, xmm2 
        subps       xmm0, SIMD_SP_rsqrt_c0 
        mulps       xmm2, SIMD_SP_rsqrt_c1 
        mulps       xmm0, xmm2 
 
        mulps       xmm4, xmm0 
        mulps       xmm5, xmm0 
        mulps       xmm6, xmm0 
        mulps       xmm7, xmm0 
 
        add         eax, 4*4 
 
        // transpose xmm4, xmm5, xmm6, xmm7 to memory 



        movaps      xmm2, xmm4 
        movaps      xmm3, xmm6 
 
        unpcklps    xmm4, xmm5 
        unpcklps    xmm6, xmm7 
 
        mov         ecx, a0 
        movlps      [esi+ecx+JOINTQUAT_Q_OFFSET+0], xmm4 
        movlps      [esi+ecx+JOINTQUAT_Q_OFFSET+8], xmm6 
 
        mov         ecx, a1 
        movhps      [esi+ecx+JOINTQUAT_Q_OFFSET+0], xmm4 
        movhps      [esi+ecx+JOINTQUAT_Q_OFFSET+8], xmm6 
 
        unpckhps    xmm2, xmm5 
        unpckhps    xmm3, xmm7 
 
        mov         ecx, a2 
        movlps      [esi+ecx+JOINTQUAT_Q_OFFSET+0], xmm2 
        movlps      [esi+ecx+JOINTQUAT_Q_OFFSET+8], xmm3 
 
        mov         ecx, a3 
        movhps      [esi+ecx+JOINTQUAT_Q_OFFSET+0], xmm2 
        movhps      [esi+ecx+JOINTQUAT_Q_OFFSET+8], xmm3 
 
        jle         loopJoint4 
 
    done4: 
        sub         eax, 4*4 
        jz          done1 
 
        movss       xmm6, lerp 
        shufps      xmm6, xmm6, R_SHUFFLE_PS( 0, 0, 0, 0 ) 
        movss       xmm7, scaledLerp 
        shufps      xmm7, xmm7, R_SHUFFLE_PS( 0, 0, 0, 0 ) 
 
    loopJoint1: 
 
        mov         ecx, [edx+eax] 
        shl         ecx, JOINTQUAT_SIZE_SHIFT 
 
        // lerp translations 
        movaps      xmm3, [edi+ecx+JOINTQUAT_T_OFFSET] 
        subps       xmm3, [esi+ecx+JOINTQUAT_T_OFFSET] 
        mulps       xmm3, xmm6 
        addps       xmm3, [esi+ecx+JOINTQUAT_T_OFFSET] 
        movaps      [esi+ecx+JOINTQUAT_T_OFFSET], xmm3 
 
        // load quaternions 
        movaps      xmm0, [esi+ecx+JOINTQUAT_Q_OFFSET] 
        movaps      xmm1, [edi+ecx+JOINTQUAT_Q_OFFSET] 
 
        // lerp quaternions 
        movaps      xmm2, xmm0 
        mulps       xmm2, xmm1 
        movhlps     xmm3, xmm2 
        addps       xmm2, xmm3 
        movaps      xmm3, xmm2 
        shufps      xmm3, xmm3, R_SHUFFLE_PS( 1, 0, 2, 3 ) 
        addss       xmm3, xmm2                  // xmm3 = cosom 
        shufps      xmm3, xmm3, R_SHUFFLE_PS( 0, 0, 0, 0 ) 
        andps       xmm3, SIMD_SP_signBit       // xmm3 = signBit 
        xorps       xmm3, xmm7                  // xmm3 = scaledLerp ^ signBit 
 
        mulps       xmm1, xmm3 
        addps       xmm1, xmm0                  // xmm1 = jointQuat + scale * blendQuat 
 
        movaps      xmm0, xmm1 
        mulps       xmm0, xmm0 
        movhlps     xmm2, xmm0 
        addps       xmm0, xmm2 
        movaps      xmm2, xmm0 
        shufps      xmm2, xmm2, R_SHUFFLE_PS( 1, 0, 2, 3 ) 
        addss       xmm0, xmm2 
 
        rsqrtss     xmm2, xmm0 
        mulss       xmm0, xmm2 
        mulss       xmm0, xmm2 
        subss       xmm0, SIMD_SP_rsqrt_c0 
        mulss       xmm2, SIMD_SP_rsqrt_c1 
        mulss       xmm0, xmm2 



 
        shufps      xmm0, xmm0, R_SHUFFLE_PS( 0, 0, 0, 0 ) 
        mulps       xmm1, xmm0 
        movaps      [esi+ecx+JOINTQUAT_Q_OFFSET], xmm1 
 
        add         eax, 1*4 
        jl          loopJoint1 
 
    done1: 
 
    } 
} 
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